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In the following, we assume that our spaces are Hausdorff, connected topological manifolds.
The main purpose of this article to establish the fact that path lifting local homeomorphisms
and covering maps are one and the same. See Thm. 11.

Let X, X ′ be two n-dimensional manifolds. Let π : X ′ → X be such that for every x′ ∈ X,
there exists an open set U ′ ∈ X ′, with x′ ∈ U ′ such that π(U ′) = U and π |U ′ : U ′ → U is a
homeomorphism. (Such maps are called local homeomorphisms.)

Let Y be any topological space and c : Y → X be a continuous map. A lift c′ of c (to X ′

or with respect to π) is a continuous map c′ : Y → X ′ such that π ◦ c′ = c. If a lift c′ exists,
we say that c can be lifted.

Lemma 1. Let π : X ′ → X be a local homeomorphism and Y a connected Hausdorff space.
Let f : Y → X be a continuous map. Let fi be a lift of f , i = 1, 2. Assume that there exists
y0 ∈ Y such that f1(y0) = f2(y0). Then, we have f1 = f2 on Y .

Proof. Let E := {y ∈ Y | f1(y) = f2(y)}. Then y0 ∈ E and hence E is non-empty. Since Y
is Hausdorff and fi are continuous, E is closed.

Since Y is connected, it is enough to prove that E is open.

Let y ∈ E and let x′ := f1(y) = f2(y). By hypothesis, there exists an open neighborhood
U ′ of x′ in X ′ such that U := π(U ′) is open and π |U ′ : U ′ → U is a homeomorphism. Since fi
are continuous from Y to X ′, there exists a neighborhood V of y such that fi(V ) ⊆ U ′. Now,
if z ∈ V , then π◦fi(z) = f(z) = π◦f2(z). Since π is one-one on U ′, this implies f1(z) = f2(z),
for any z ∈ V , a neighborhood of y. That is, y ∈ V ⊆ E and hence E is open.

Definition 2. Let X,X ′ be manifolds. Let π : X ′ → X be a continuous map. π is said to
be a covering map (or X ′ is a covering of X) if for every x ∈ X, we can find a neighborhood
U of x such that π−1(U) is a disjoint union π−1(U) := ∪U ′α where U ′α is open in X ′ and
π : U ′α → U is a surjective homeomorphism.

U as above is called an admissible neighborhood of x; or U is evenly covered by π. (Note
that if U is connected, the U ′α’s are nothing other than connected components of π−1(U).)

Remark 3. A covering map is obviously a local homeomorphism.
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If U is an admissible neighborhood of x and V ⊆ U is a neighborhood of x, then V is an
admissible neighborhood of x.

The characterizing property of a covering map is the existence of lifts of curves c : I → X.
In the proposition below, we shall prove this one way.

Proposition 4. Let π : X ′ → X be a covering map. Let a′ ∈ X ′ and a := π(a′). Let
I := [0, 1]. Let c : I → X be a curve with c(0) = a. Then there exists a unique lift c′ : I → X
with c′(0) = a′.

Proof. Let Ux denote an admissible neighborhood of x, for x ∈ X. Since c(I) is compact,
there exists a finite family Ui := Uxi of admissible neighborhoods and a partition 0 = t0 <
t1 < · · · < tn = 1 of I such that c([ti, ti+1]) ⊆ Ui, i = 0, 1, . . . , n − 1. Let V0 be the unique
connected component of π−1(Ui) such that a′ ∈ V0. Since π |V0 : V0 → Ui is a homeomorphism.
We can define c′ : [t0, t1]→ V0 by pulling c via (π |V0)−1

c′ := (π |V0)−1 ◦ c, on [t0, t1].

We now proceed by an obvious induction. Assume that c′ is defined on [0 = t0, ti], i ≥ 1.
Let Vi be the connected component of π−1(U1) containing c′(ti). We define c′ : [ti, ti+1]→ Vi
using the homeomorphism π |Vi : Vi → Ui as above. Then c′ is defined continuously on
[t0, ti+1]. Uniqueness follows from Lemma 1.

Definition 5. Let ci : [0, 1] → X, i = 0, 1 be two curves. We say that c0 is homotopic to
c1 (or c0 and c2 are homotopic) if there exists a continuous map H : I × I → X such that
H(s, 0) = c0 and H(s, 1) = c1. We let ct(s) := H(s, t). H is called a homotopy between c0
and c1.

Let c0(0) = c1(0) = a. F is said to fix the end point a if

ct(0) = c0(0) = a for all t ∈ I and

ct(1) = c0(1) = b for all t ∈ I.

Theorem 6 (Monodromy Theorem). Let X,X ′ be manifolds. Let π : X ′ → X be a local
homeomorphism. Let a = π(a′), b ∈ X. Let c0, c1 be curves in X which start from a and end
at b. Let H := ct be a homotopy between c0 and c1 leaving the end points fixed.

Let c′0, c′1 be lifts of c0 and c1 having a′ as their initial point.

Then they have the same endpoint and there exists a unique homotopy H ′ : I × I → X ′ of
c′0 to c′1 such that H ′ is a lift of H.

Furthermore, H ′ fixes the endpoints also. (In particular, c′t(1) = c′0(1) = c′1(1), for all
t ∈ [0, 1].)

Proof. By Prop. 4, each path ct : I → X has a unique lift c′t : I → X ′, with c′t(0) = a′. We
let H ′(s, t) := c′t(s). Thus H ′ : I × I → X ′ with π ◦H ′ = H. But continuity of H ′ is to be
established.
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We mimic the idea of the proof of Prop. 4. Fix t0 ∈ I. We choose a partition of the line
I × {0} ⊆ I × I by 0 = s0 < s1 < · · · < sn = 1 such that each interval {[s, t0] | si ≤ s ≤ si+1}
is carried by H |I×{t0}= ct0 into an admissible neighborhood Vi of X. Let Vi be the connected
component of π−1(Ui) containing c̃t0(si). Note that, we have, c̃t0(s) = (π |Vi)−1(ct0(s)) for
si ≤ si+1. By continuity of H, there exists ε > 0 such that if Qi is the cube Qi := {(s, t) |
si ≤ s ≤ si+1, t0− ∂ ≤t ≤ t+ ∂}, then H(Q) ⊆ Ui. Hence H̃(s, t) = c̃t(s) = (π |Vi)−1(H(s, t))

on Qi. This implies that H̃ is continuous on Qi.

This holds true for all i, 0 ≤ i ≤ n− 1 and hence H̃ is continuous in a δ-neighborhood of
the line I × {0}, viz., {(s, t) | s ∈ I, |t − t0| < ∂}. Since t0 is arbitrary, H̃ is continuous on
I × I.

Since H̃ is continuous, the map γ̃ : t 7→ c̃t(1) is continuous. γ̃ is clearly a lift of the
constant map γ : t 7→ ct(1) = b. Hence by Lemma 1, γ̃ is also the constant map, viz.,
γ̃(t) = c̃t(1) = c̃0(1) = b.

Definition 7. Let X be a path connected Hausdorff space. Let a ∈ X, c a loop at a, i.e., c
is a curve such that c(0) = a = c(1). We say that c is homotopic to a constant (loop) if there
exists a homotopy {ct} such that c0 = c and c1(t) = a, for all t, and {ct} fixes the end points.
(Thus, ct are loops.)

Definition 8. A path connected Hausdorff space is said to be simply connected if every loop
in it is homotopic to a constant.

Definition 9. Let π : X ′ → X be a local homeomorphism. We say that π has the curve
lifting property if the following holds: If a′ ∈ X ′, c : I → X is a curve with c(0) = π(a′) = a,
then there is a lift c′ : I → X ′ of c with c′(0) = a′.

Proposition 10. Let π : X ′ → X have curve lifting property. Assume X, X ′ are connected
manifolds and that X is simply connected. Then π is homeomorphism.

Proof. We first prove that π is surjective. Let x ∈ X. Fix a ∈ X, a′ ∈ X ′ with π(a′) = a.
Let c be a curve joining a and x. If c′ is a lift of c, then π(c′(1)) = x.

We next prove that π is injective. Let y1, y2 ∈ X ′ with π(y1) = x = π(y2). Let c′ be
a curve joining y1 and y2 in X ′. Let c := π ◦ c′. Then c is a loop at x in X. Since X is
simply connected, c is homotopic to the constant loop at x, via a homotopy {ct} leaving x,
the endpoint(s) fixed. Let c′t be the lift of ct with c′t(0) = c′(0) = y1. (Existence of c′t follows
from the curve lifting property of π and uniqueness from Lemma 1.) By Monodromy theorem,
t 7→ c′t(1) is a constant, viz., c′(1) = y2.

Since c1 is the constant loop at x, by Lemma 1, c′1 must be a constant loop. But c′1(0) = y1
so that c′1(s) = y1 for all s. Thus y2 = c′(1) = c′0(1) = c′t(1) = c′1(1) = y1. Hence π is injective.

Since π is a local homeomorphism, it is an open map. Thus π is bijective, open, continuous.

We now prove the converse of Prop. 4.

Theorem 11. Let π : X ′ → X be a local homeomorphism of connected manifolds. Then π is
a covering map iff π has the curve lifting property.
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Proof. To prove the ‘if’ part. Let a ∈ X. Since X is a manifold, there exists a simply
connected neighborhood U of a in X. Let π−1(U) = ∪U ′α be the decomposition of connected
components. Since π has the curve lifting property, π |U ′

α
: U ′α → U has the same property.

For, if a′ ∈ U ′α, c : I → U is a curve with c(0) = π(a′) and c′ is a lift of c, then c′(I) ⊆ U ′α,
since c′(I) is a connected set containing a′.

Prop. 10 now implies that π |U ′
α
: U ′α → U is a homeomorphism for all α.
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