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Ex. 1. Given a convex subset C of Rn with nonempty interior there is a homeomorphism
f : C → Dn such that f(∂C) = Sn−1.

Ex. 2. Given x, y ∈ Dn show that there exists a homeomorphism f : Dn → Dn such that
f(x) = y and f maps Sn−1 to Sn−1.

Ex. 3. Show that any connected manifold X is homogeneous—given x, y ∈ X there exists
a homeomorphism ϕ : X → X such that ϕ(x) = y. Hint: The orbits under the group of
homeomorphisms are open.

Ex. 4. Let X be a path connected space, U , V open simply connected subsets of X. Assume
that X = U ∪ V and U ∩ V is path connected. Then X is simply connected.

Ex. 5. Apply the last result to show that Sn (n ≥ 2) is simply connected.

Ex. 6. The unit sphere is a deformation retract of Rn \ {0}.

Ex. 7. Show that Sn is a deformation retract of Dn+1 \ {0}.

Ex. 8. Show that the equator Sn−1 is a deformation retract of Sn \{±en+1}. Hence Sn minus
2 points and Sn−1 have the same homotopy type.

Ex. 9. Let K be a compact subset of Rn. Show that Rn \ K has exactly one unbounded
component.

Ex. 10. f : S1 → X is null-homotopic iff f can be extended to a map D2 → X.

Ex. 11. This is a generalisation of the last exercise. Let f : Sn → X be a continuous map.
The following are equivalent:
i) f is null homotopic.
ii) f can be extended to a continuous map Dn+1 → X.
iii) If x0 ∈ Sn and c = f(x0) is the constant map then there is a homotopy H : f ' c with
F (x0, t) = f(x0) for all t ∈ I.

Ex. 12. Given X let CX denote the quotient space X×I/(X×{1}). Then CX is called the
cone over X and the point [(x, t)] is the vertex of CX. Show that CX is always contractible.

Ex. 13. Every space can be embedded in a contractible space.
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Ex. 14. Exhibit Dn+1 as a cover over Sn with vertex 0.

As a rule all spaces are path connected, locally path connected and hausdorff. One may
even assume that they are manifolds.

Ex. 15. Show that the following are covering maps:
i) π : R→ R+ given by π(x) = ex.
ii) π : R→ S1 given by π(x) = e2πx.
iii) π : Sn → Pn, the quotient map.
iv) πnS

1 → S1 given by πn(z) = zn, n ∈ N.
v) π1 × π2X1 ×X2 → B1 ×B2 where πi : Xi → Bi is a covering map .
vi) the polar coordinate map p : {(r, θ) ∈ R2 : r > 0} → R2 \ {0} given by p(r, θ) =
(r cos θ, r sin θ).
vii) z 7→ ez from C to C∗.
viii) z 7→ zn from C∗ to C∗.

Ex. 16. Fix a, b, cd ∈ Z with m := ad − bc 6= 0. Consider the map f : S1 × S1 → S1 × S1

given by (z, w) 7→ (z1wb, zcwd). Then f is a |m| sheeted covering.

Ex. 17. Find three distinct coverings of the torus.

Ex. 18. Prove that covering maps are local homeomorphisms. The converse is not true even
if we assume that the map is surjective. Hint: Look at the restriction to (0,∞) of the covering
of S1.

Ex. 19. Any covering map is open.

Ex. 20. Let p : E → B and p′ : E′ → B be covering maps. Let f : E → E′ be continuous
such that p′ ◦ f = p. Then f is a covering.

Ex. 21. Let X, Y be connected and path connected. Assume that X is compact and Y is
hausdorff. Let f be a local homeomorphism. Then f is onto and is a covering.

Ex. 22. Let G be a group of homeomorphisms of X. We say G acts on X properly discon-
tinuously if there is a G-action on the set X such that x 7→ g · x is a homeomorphism for
each g ∈ G and such that every x ∈ X has a neighbourhood U such that gU ∩ g′U = ∅ for
g 6= g′ ∈ G. Assume that G acts properly discontinuously on X. Then p : X → X/G is a
covering.

Ex. 23. Show that the following actions are properly discontinuous:
i) Zn acts on Rn via translation: z · x = z + x, z ∈ Zn and x ∈ Rn. The quotient space is
homeomorphic to Tn = S1 × · · · × S1 (n-times).
ii) Let G be the group generated by the homeomorphisms (x, y) 7→ (x + 1, y) and (x, y) 7→
(x, y) 7→ (−x, y + 1) on R2. The quotient is a Klein bottle.
iii) Let G be the group generated by the homeomorphism (x, y) 7→ (x + 1,−y) on R2. The
quotient is a Mobius band.
iv) Let X = Rn \{0}. Fix r ∈ R\{0,±1}. Let G = Z. Define a G-action on X by g ·x = rgx.
The quotient here is homeomorphic to S1 × Sn−1.

Ex. 24. If a finite group G acts on a Hausdorff space X such that (gx = x)⇒ (g = e) then
G acts properly discontinuously.
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Ex. 25. Lens Spaces. Let p and q be relatively prime integers. Consider S3 as a subset of
C × C in the natural way. The homeomorphism ϕ§3 → §3 given by (z, w) 7→ (e2πi/p, e2πq/p).
This generates a cyclic group G of order p. The quotient S3/G is called a Lens space and
denoted by L(p, q). The quotient map S3 → L(p, q) is a covering.

Ex. 26. Can path lifting lemma be proved for surjetive local homeomorphisms?

Ex. 27. Let p : E → B be a covering map. Show that π∗ : π1(E, e0)→ π1(B, b0) is one-one.

Ex. 28. Let p : E → B be a covering map. Then #π−1(x) = #π−1(y) for x, y ∈ B.

Ex. 29. Let X and Y be locally compact along wityh our usual hypothesis. Let f : X → Y
be a local homeomorphism. Assume further that f is proper. Then f is a covering map.

Ex. 30. Let f : Rn → Rn be a C1 map which is proper. Assume that Df(x) is nonsingular
for all x ∈ Rn. Then f is a diffeomorphism of Rn onto Rn.

Ex. 31. The topologists’ sine curve is the space X ⊂ R2 given by

X := {(x, sin 1/x) : 0 < x ≤ 1} ∪ {(0, y) : −1 ≤ y ≤ 1}.

Compute H∗(X).

Ex. 32. If the inclusion j : A ↪→ X is a homotopy equivalence then Hp(X,A) = 0.

Ex. 33. Let X = A ∪B be a disconnection. Then Hn(X) = Hn(A)⊕Hn(B), for all n ≥ 0.

Ex. 34. Under the assumptions of the last exercise, Hn(X,A) ' Hn(B).

Ex. 35. Show that H0(X,A) = 0 if A 6= ∅.

Ex. 36. Show that Hq(X,x0) '

{
{0} for q = 0,

Hq(X) for q ≥ 1.

Ex. 37. Use Mayer-Vietoris sequence to compute H∗(Sn) for all n ≥ 1.

Ex. 38. Let X be S1 along with any of its diameters. Compute its homology groups.

Ex. 39. Let X be the topologists’ sine curve Exer. 31. The closed sine curve Y is the space
X along with an arc c which intersect X only at the points (0,−1) and (1, sin 1). Compute
H∗(Y ) using a suitable Mayer-Vietoris sequence.

Ex. 40. Prove by two different methods that Rm and Rn are homeomorphic iff m = n: i)
their one point compactifications are not homeomorphic ii) the complement of a point in Rm
and that its corresponding point in Rn are not homeomorphic.

Ex. 41. Assume that X = U ∩ V , U and V open. Assume further that U ∩ V is nonempty
and contractible. Compute the homology groups of X in terms of those of U and V .

Ex. 42. Assume that X = A ∪B, A and B closed and A ∩B = {x0}. Assume further that
x0 has an open neighbourhood N in X such that N ∩ A and N ∩B are contractible in such
a way that during the contractions x0 remain fixed. Compute the homology groups of X in
terms of those of A and B.
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Ex. 43. Compute H∗(Dn, Sn−1).

Ex. 44. Compute H∗(Rn,Rn \ {0}).

Ex. 45. Compute H∗(Sn) using the excision and homotopy theorems.

Ex. 46. If X is a Hausdorff space and x ∈ X, then Hp(X,X \ {x}) is called the p-th
local homology group of X at x. If U is any neighbourhood of x0 then H∗(U,U \ {x0}) '
H∗(X,X \ {x0}). (Thus H∗(X,X \ {x0}) depends only on arbitrarily small neighbourhoods
of x in X. Hence the epithet “local” is justified!) Hint: Excision theorem.

Ex. 47. Determine the local homology groups at various points of Dn.

Ex. 48. Invariance of dimension. Let x ∈ U ⊂ Rm and y ∈ V ⊂ Rn. Assume U and
V are open in their respective spaces and that (U, {x}) is homeomorphic to (V, {y}). Then
m = n. (This trivially follows from invariance of domain. You are required to use local
homology groups, Exer. 44.)

Ex. 49. Invariance of the boundary. Let Rn+ := {x ∈ Rn : x1 ≥ 0}. Let x, y ∈ Rn+
have neighbourhoods U and V such that (U, x) ' (V, y). Then either both x and y lie on the
boundary ∂Rn+ or both lie in the interior. Hint: If x ∈ ∂Rn+ then (Rn+,Rn+ \ x) is contractible
to (z, z) with z in the interior of Rn+. Hence H(Rn+,Rn+ \ x) ' H(z, z) = 0. If y lies in the
interior then Hn(Rn+,Rn+ \ y) ' Hn(Rn,Rn \ y) by excision.

Ex. 50. 101 Prove (once again!) that any homeomorphism of Dn onto itself maps Sn−1 onto
Sn−1.

Ex. 51. Let f : Dn → Rn be continuous. Then there exists an x ∈ Dn such that f(x) = 0 or
a y ∈ Sn−1 such that f(y) = λy for some λ ∈ R. Hint: Consider

g(x) :=

{
2(‖x‖ − 1)x− (2− 2 ‖x‖)f(x/ ‖x‖) for ‖x‖ ≥ 1/2,

−f(4 ‖x‖x) for ‖x‖ ≤ 1/2.

Then g(z) = z for z ∈ Sn−1 and g vanishes at some point in the interior of Dn.

Ex. 52. Let f : Dn → R be continuous. Then f(x) = x for some x ∈ Dn or f(z) = λz for
some z ∈ Sn−1 and λ > 1. Hint: Replace f by f − Id in the last exercise.

Ex. 53. Let X be any space. Consider ΣX the suspension of X: it is the quotient of X × I
induced by an equivalence relation whose equivalence classes are X × {0}, X × {0} and the
singletons (x, t) as x ∈ X and 0 < t < 1. Show that H̃p+1(ΣX) ' H̃p(X).

Ex. 54. Show that ΣSn ' Sn+1. Use this to compute H∗(S
n).

Ex. 55. If p ∈ Sn then Hr(X × Sn, X × {p}) ' Hr−n(X). Hint: Express Sn as the union of
two hemispheres and induct on n.

Ex. 56. If q ∈ Y the homology exact sequence of (X × Y,X × q) breaks up into short exact
sequnces that split.

Ex. 57. Prove that Hp(X × Sn) ' Hp−n(X)⊕Hp(X).

Ex. 58. Compute the homology of Sm × Sn.
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Ex. 59. Given f : Sn → Sn there is an associated map Σf : Sn+1 → Sn+1 called the sus-

pension of f . More specifically, let Σf(x, t) :=

{
(x, t) if x = 0

(‖x‖ · f(x/ ‖x‖ , t) if x 6= 0.
Show that

the degree of Σf is that of f . Hint: Go through the computation of the degree of the map
(x1, x2, . . . , xn+1) 7→ (−x1, x2, . . . , xn+1).

Ex. 60. Show that given any integer n there is a map f : Sn → Sn with degree n.

Ex. 61. Let f : Sn → Sn be of nonzero degree. Show that f is onto.

Ex. 62. Show that an even dimensional sphere Sn has no nowhere vanishing tangent vector
field. Hint: Let u be a unit tangent vector field. Then H(t, x) := cosπtx + sinπtu(x) is a
homotopy between the identity and the antipodal map.

Ex. 63. Let f , g : Sn → Sn be such that f(x) 6= g(x) for all x ∈ Sn. Then f and A ◦ g are
homotopic. (A is the antipode map.)

Ex. 64. If f : S2n → S2n is a map then there exists an x such that either f(x) = x or
f(x)− x. Hint: Use the last exercise. Or assuming the contrary observe that {x, f(x)} spans
a two dimensional vector space and hence we can find a nowhere vanishing tangent vector
field. Apply Exer. 62.

Ex. 65. If n is even any map P2n → P2n has a fixed point.

Ex. 66. There is no continuous f : S2n → S2n such that x and f(x) are orthogonal for all x.
Use this to give another proof of Exer. 62.

Ex. 67. Let A be an n × n orthogonal matrix. Then A, as a linear map on Rn induces a
map on Sn−1. What is its degree?

Ex. 68. Let A be a nonsingular n × n-matrix. Consider this as a linear map on Rn. This
extends to a continuous map f on Sn. The degree of f is the sign of the determinant of A.

Ex. 69. Using the degree theory prove the fundamental theorem of algebra: Every polynomial
p(z) := zn+c1z

n−1+· · ·+cn, n > 0 has a zero. Hint: If p has no zeros on S1, define f : S1 → S1

by f(z) := p(z)
|p(z)| . Then i) if p has no zeros in |z| ≤ 1 then degree of f is zero and ii) if f has

no zeros in |z| ≥ 1 then degree of f is n.

Ex. 70. If a complex polynomial p has no zeros on S1 and has m zeros inside S1 (counted

with multiplicity) then the map f(z) := p(z)
|p(z)| has degree m.

Ex. 71. Let D be the closed unit ball in Rn. Show that any homeomorphism of D onto itself
carries Sn−1 onto Sn−1.

Ex. 72. 1 Show that Sn is not homeomorphic to any proper subset of itself.

Ex. 73. Prove that a continuous map f : Sn → Rn cannot be 1-1.

Ex. 74. Prove that the invariance of domain holds if the ambient space Sn is replaced by
Rn.

Ex. 75. Let A and B be homeomorphic subsets of Rn. True or false? If A is closed then B
is closed.
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Ex. 76. Show that the invariance of domain is false if Sn is replaced by Dn for n ≥ 1.

Ex. 77. Show that the invariance of domain holds for X as an ambient space then it holds
for Y as an ambient space if Y is homeomorphic to X.

Ex. 78. Let U ⊂ Rn be open. Let f : U → Rn be continuous and 1-1. Then f is a
homeomorphism of U onto f(U).

Ex. 79. Let m < n. Show that no subset of Sm can be homeomorphic to In.

Ex. 80. Let X be a topological space. Assume that X can be made into an n-dimensional
manifold as well as an m-dimensional manifold. What can you say about m and n?

Ex. 81. Assume that X and Y are n-dimensional manifolds. Let U ⊂ X and V ⊂ Y be
homeomorphic. If U is open in X then V is open in Y .

Ex. 82. Show that there is no continuous 1-1 map from an open set in Rn into Rm if m < n.

Ex. 83. Find an example of a map f : R → R2 which is 1-1 and continuous but for which
the image of some open subset of R is not open in f(R). Hint: Figure ∞!

Ex. 84. Show that Sn cannot be disconnected by removing a k-cell (' Ik) for 0 ≤ k ≤ n.
Hint: This is an immediate corollary of a result needed for the Jordan-Brouwer separation
theorem.

Ex. 85. Let A ⊂ Rn be homeomorphic to Ik (0 ≤ k ≤ n). Determine the homology groups
of Rn \A.

Ex. 86. Let n > 1. Let A be a subset of Rn homeomorphic to Sn−1. Then Rn \ A has
precisely — components with A as a common boundary.

Ex. 87. Let A be a closed subset of Rn which is homeomorphic to Rn−1. Show that Rn \A
has exactly — components.

Ex. 88. Let A ⊂ Rn be a closed subset homeomorphic to Rm (m < n). Compute H∗(Rn\A).

Ex. 89. Let A and B be subsets of Sn. Assume that A (resp. B) is homeomorphic to Sp
(resp. Sq), 0 < p ≤ q ≤ n. Determine the homology groups of Sn \ (A∪B) where i) A∩B = ∅,
ii) |A ∩B| = 1.
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