Existence of Continuous Logarithms

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Proposition 1. Let X be any topological space and let $F: X \times [0,1] \to \mathbb{C}^*$ be a continuous map. Assume that the restriction of F to $X \times \{0\}$ has a continuous logarithm, say, $\varphi \colon X \times$ ${0} \rightarrow \mathbb{C}$ such that $exp(\varphi(x, 0)) = F(x, 0)$. Then there exists a continuous logarithm ψ of F that extends φ .

Proof. We first establish a local version of this result, that is, for each $x \in X$, there exists an set $U_x \ni x$ in X and a continuous map $\psi_x : U_x \times [0,1] \to \mathbb{C}$ with the properties:

- (i) $\psi_x(x', 0) = \varphi(x)$ for all $x \in U_x$,
- (ii) $\exp(\psi_z(x',t)) = F(x',t)$ for $(x',t) \in U_x \times [0,1].$

Given $(x_0, t) \in X \times [0, 1]$, we let $V := \mathbb{C} \setminus (-\infty, 0)$. Then we know that there exists a continuous logarithm on V. By continuity of F, there exists an open set $U_t \ni x_0$ and $J_t \supseteq (t - \varepsilon_t, t + \varepsilon_t)$ such that $F(x, t) \in V$ for $(x, t) \in U_t \times J_t$. Now, $\{J_t : t \in [0, 1]\}$ is an open cover of the compact set [0,1]. Let $0 = t_0 < t_1 \cdots < t_n = 1$ be points such that $\{J_k: 0 \leq k \leq n\}$ is a finite subcover of [0,1]. (Here, we have let J_k stand for J_{t_k} . Also, once a finite set of points are obtained by the compactness, we may assume if necessary by including, that 0 and 1 are among the finite set of points.) We now define $U := \bigcap_{k=0}^n U_k$, in an obvious notation. Clearly, $F(U \times [t_k, t_{k+1}]) \subset V$, $0 \leq k \leq n$. We now define the maps $\psi_k: U \times [t_k, t_{k+1}] \to \mathbb{C}$ inductively as follows.

Let \log_0 be the continuous logarithm on V. Then by composing the restriction of F to $U \times [0, t_1]$ with \log_0 , we get a continuous logarithm of F, say, $g_0: g_0(x, t) := \log_0 \circ F(x, t)$. Since

$$
\exp(g(x,0)) = F(x,0) = \exp(\varphi(x)),
$$

we see that $\exp[g(x, 0) - \varphi(x)] = 1$. Since we would like our logarithm of F to extend φ , we set

$$
\psi_0(x,t) = g_0(x,t) - g(x,0) - \psi(x),
$$

for $(x, t) \in U \times [0, t_1]$. It is then easily verified that $\exp(\psi_0) = F$ and $\psi(x, 0) = \varphi(x)$ for $x \in U$.

It should be clear now how to define $\psi_i: U \times [t_1, t_2]$. Arguing in a way similar to 0-th level construction, we can find continuous functions $\psi_k : U \times [t_k, t_{k+1}] \to \mathbb{C}$ such that $\exp(\psi_k) = F$ and $\psi_k(x, t_k) = \psi_{k-1}(x, t_k)$. By gluing lemma, we get a continuous function $\psi: U \times [0, 1]$ with the required properties.

Now we can complete the proof. We use an obvious notation. For any $x_1, x_2 \in X$, and for any $x \in U_1 \cap U_2$, we have

$$
\exp(\psi_1(x,t)) = F(x,t) = \exp(\psi_2(x,t)),
$$

so that we deduce that

$$
\psi_1(x,t) - \psi_2(x,t) = 2\pi i n(t), \text{ for some } n(t) \in \mathbb{Z}.
$$

The left side is a continuous function of t and hence $t \mapsto n(t)$ must also be continuous. Since [0, 1] is connected, we conclude that $t \mapsto n(t)$ must be a constant. Since $\psi_1(x, 0) = \psi_2(x, 0) =$ $\varphi(x)$, we see that $n(0) = 0$. Hence $n(t) = 0$ for all $t \in [0, 1]$.

What we have shown is that any pair of the functions ψ_x agree on their common domain. Note that the domains are open subsets of $X \times [0,1]$ and their union is $X \times [0,1]$. Hence, by gluing lemma, they yield a continuous function $\psi: X \times [0,1] \to \mathbb{C}$ with the required properties. \Box

Corollary 2. Let $S \subset \mathbb{R}^n$ be any star-shaped subset. Then any continuous map $f: S \to \mathbb{C}^*$ has a continuous logarithm.

Proof. Let $p \in S$ be a 'star'. Consider the map $F: S \times [0,1] \to \mathbb{C}^*$ defined by

$$
F(x,t) := f(tx + (1-t)p) \text{ for } (x,t) \in S \times [0,1].
$$

Since $F(x, 0) = f(p) \neq 0$, if we take $\varphi(x) := \log_0(f(p))$, then φ is a continuous logarithm of $F(x, 0)$. Hence by the last theorem, there exists a continuous logarithm, say, ψ of F. Clearly, $x \mapsto \psi(x, 1)$ is a continuous logarithm of f. \Box

Corollary 3. There exists no continuous retraction of the closed ball in \mathbb{R}^2 to its boundary, That is, there exists no continuous map $f: B[0,1] \to S^1$ with the property $f(z) = z$ for all $z \in S^1$.

Proof. Suppose such a retraction f exists. Since $B[0, 1]$ is convex, there exists a continuous logarithm, say, ψ of f. Restricting ψ to S^1 yields a continuous map with the property that $\exp(\psi(z)) = f(z) = z$. That is, the restriction of ψ to S^1 is a continuous argument on S^1 . We know that this is impossible. This shows that there is no retraction of the ball to its boundary. \Box

From this corollary, one deduces Brouwer fixed point theorem for closed ball in the usual way.