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Proposition 1. Let X be any topological space and let F: X x [0,1] — C* be a continuous
map. Assume that the restriction of F' to X x {0} has a continuous logarithm, say, ¢: X X
{0} = C such that exp(p(x,0)) = F(x,0). Then there exists a continuous logarithm 1 of F
that extends .

Proof. We first establish a local version of this result, that is, for each x € X, there exists an
set U,  z in X and a continuous map ¢, : U, x [0,1] — C with the properties:

(1) ¥y (2',0) = p(z) for all z € U,

(ii) exp(¢,(2/,t)) = F(2',t) for (2/,t) € Uy x [0, 1].

Given (zo,t) € X x [0,1], we let V := C\ (—00,0). Then we know that there exists
a continuous logarithm on V. By continuity of F', there exists an open set U; > zg and
Ji O (t — e, t + €¢) such that F(z,t) € V for (x,t) € Uy x Ji. Now, {J; : t € [0,1]} is
an open cover of the compact set [0,1]. Let 0 = ¢ty < t;--- < t, = 1 be points such that
{Jr : 0 < k < n} is a finite subcover of [0,1]. (Here, we have let J; stand for J;,. Also,
once a finite set of points are obtained by the compactness, we may assume if necessary by
including, that 0 and 1 are among the finite set of points.) We now define U := N}_,Uy, in
an obvious notation. Clearly, F'(U X [tk txt1]) C V, 0 < k < n. We now define the maps
Y U X [ty, ty+1] — C inductively as follows.

Let log, be the continuous logarithm on V. Then by composing the restriction of F' to
U x [0,t;] with log,, we get a continuous logarithm of F, say, go: go(z,t) := loggoF(x,t).
Since
exp(g(z,0)) = F(x,0) = exp(p(z)),

we see that exp[g(z,0) — ¢(x)] = 1. Since we would like our logarithm of F' to extend ¢, we
set

Yo(x,t) = go(x,t) — g(x,0) —(x),

for (z,t) € U x [0,t1]. It is then easily verified that exp(i9) = F and ¢(z,0) = ¢(z) for
reU.

It should be clear now how to define ¥;: U x [t1,t2]. Arguing in a way similar to 0-th level
construction, we can find continuous functions ¢y : U X [tg, ;1] — C such that exp(¢y) = F
and Y (z, ty) = Yg—_1(z, tr). By gluing lemma, we get a continuous function ¢: U x [0, 1] with
the required properties.



Now we can complete the proof. We use an obvious notation. For any z1,z0 € X, and
for any z € Uy N Us, we have

eXP(ﬂ}l(fU’t)) = F(IL‘,t) = eXp(¢2(x7t))7
so that we deduce that
1 (z,t) — o(x,t) = 2min(t), for some n(t) € Z.

The left side is a continuous function of ¢ and hence t — n(t) must also be continuous. Since
[0, 1] is connected, we conclude that ¢ — n(t) must be a constant. Since ¥ (x,0) = ¥a(z,0) =
©(x), we see that n(0) = 0. Hence n(t) =0 for all ¢ € [0, 1].

What we have shown is that any pair of the functions ¥, agree on their common domain.
Note that the domains are open subsets of X x [0, 1] and their union is X x [0,1]. Hence,
by gluing lemma, they yield a continuous function t: X x [0,1] — C with the required
properties. O

Corollary 2. Let S C R"™ be any star-shaped subset. Then any continuous map f: S — C*
has a continuous logarithm.

Proof. Let p € S be a ‘star’. Consider the map F': S x [0, 1] — C* defined by
F(x,t):= f(tz + (1 —t)p) for (x,t) € S x [0,1].

Since F(x,0) = f(p) # 0, if we take ¢(x) := logy(f(p)), then ¢ is a continuous logarithm of
F(x,0). Hence by the last theorem, there exists a continuous logarithm, say, ¢ of F'. Clearly,
x +— YP(x,1) is a continuous logarithm of f. O

Corollary 3. There ezists no continuous retraction of the closed ball in R? to its boundary,
That is, there exists no continuous map f: B[0,1] — S with the property f(z) = z for all
zec St

Proof. Suppose such a retraction f exists. Since B[0, 1] is convex, there exists a continuous
logarithm, say, 1 of f. Restricting 7 to S' yields a continuous map with the property that
exp(1)(2)) = f(z) = z. That is, the restriction of ¢ to S! is a continuous argument on S*.
We know that this is impossible. This shows that there is no retraction of the ball to its
boundary. O

From this corollary, one deduces Brouwer fixed point theorem for closed ball in the usual
way.



