A Continuous but Nowhere Differentiable Function

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

The aim of this article is to construct (in a series of graded exercises) a Weierstrass type function on \mathbb{R} which is continuous on \mathbb{R} but not differentiable at any point.

1. Let $\varphi \colon \mathbb{R} \to \mathbb{R}$ be differentiable at $x \in \mathbb{R}$. Let (s_n) and (t_n) be sequences such that $s_n \leq x \leq t_n$ with $\lim t_n - s_n = 0$, that is, $s_n \to x$ and $t_n \to x$. Show that the sequence $([\varphi(t_n) - \varphi(s_n)]/(t_n - s_n))$ is convergent.

Let $s_n \leq c \leq t_n$ with $t_n - s_n \to 0$. Observe that for any $\alpha \in \mathbb{R}$, we have

$$\frac{\varphi(t_n) - \varphi(s_n)}{t_n - s_n} - \alpha = \left(\frac{\varphi(t_n) - \varphi(c)}{t_n - c} - \alpha\right) \left(\frac{t_n - c}{t_n - s_n}\right) + \left(\frac{\varphi(a) - \varphi(s_n)}{c - s_n} - \alpha\right) \left(\frac{c - s_n}{t_n - s_n}\right)$$

Now take $\alpha = f\varphi'(c)$, observe that $\left(\frac{t_n-c}{t_n-s_n}\right) \leq 1$, $\left(\frac{c-s_n}{t_n-s_n}\right) \leq 1$. Hence

$$\left|\frac{\varphi(t_n) - \varphi(s_n)}{t_n - s_n} - \varphi'(c)\right| \le \left|\frac{\varphi(t_n) - \varphi(c)}{t_n - c} - \varphi'(c)\right| + \left|\frac{\varphi(a) - \varphi(s_n)}{c - s_n} - \varphi'(c)\right|$$

Now take limits to obtain the result.

2nd Proof. Since f is differentiable at a, given $\varepsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x) - f(a) - f'(a)(x - a)| < \varepsilon \text{ for } 0 < |x - a| < \delta.$$

Hence we have

$$\varepsilon(x-a) < f(x) - f(a) - f'(a)(x-a) < \varepsilon(a-x)$$

$$\varepsilon(a-y) < f(y) - f(a) - f'(a)(y-a) < \varepsilon(y-a)$$

Subtracting the middle term of the second from that of the first the first, and using the inequalities in the correct way, we obtain

$$-\varepsilon(x-y) < f(x) - f(y) - f'(a)(x-y) < \varepsilon(x-y).$$

This yields the result.

Third Proof. Recall that if f is differentiable at a, then there exists a function f_1 which is continuous at a with (i) $f_1(a) = f'(a)$ and (ii) $f(x) = f(a) + f_1(x)(x-a)$ for

 $x \in J$. Apply (ii) with x = x and x = y. Subtract the second from the first and after a simple algebraic manipulation we deduce for x < a < y,

$$f(x) - f(y) = f_1(x)(x - y) \left[f_1(x) - f_1(y) \right] (y - a)$$

It follows that for $x_n < a < y_n$ with $y_n - x_n \to 0$,

$$\left|\frac{f(x_n) - f(y_n)}{x_n - y_n} - f_1(x_n)\right| \le |f_1(x_n) - f_1(y_n)| \left|\frac{y_n - a}{y_n - x_n}\right| \le |f_1(x_n) - f_1(y_n)|.$$

Letting $n \to \infty$, we obtain the required result.

- 2. A rational number of the form $m/2^n$ is called a *dyadic rational*. Show that the set D of dyadic rationals is dense in \mathbb{R} . Hence conclude that given $x \in \mathbb{R}$ and $n \in \mathbb{N}$, there exist dyadic rationals s_n, t_n such that $s_n = j/2^n$ and $t_n = (j+1)/2^n$ and $s_n \leq x < t_n$.
- 3. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) := \min\{d(x, [x]), d(x, [x] + 1)\}$, where [x] stands for the greatest integer less than or equal to x. Draw the graph of f. Show that it is continuous on \mathbb{R} . (Observe that $f(x) = d(x, \mathbb{Z})$.) Note that $0 \le f(x) \le 1/2$ for all x.
- 4. Show that f is periodic of period 1, that is, f(x) = f(x+1) for any $x \in \mathbb{R}$.
- 5. Consider the half intervals [0, 1/2] and [1/2, 1]. Note that if s, t, say, s < t, lie in the same half interval, then the difference quotient [f(t) f(s)]/(t s) is the slope of the chord joining (s, f(s)) and (t, f(t)) and it is either 1 or -1.
- 6. Let $f_0 = f$ and $f_n(x) := 2^{-n} f(2^n x)$ for $n \ge 1$. Draw graphs of f_0, f_1, f_2 on the 'same graph sheet'. Observe that $0 \le f_n(x) \le 2^{-(n+1)}$.
- 7. Let $g(x) := \sum_{k=0}^{\infty} f_k(x)$. Show that g is a continuous function on \mathbb{R} .
- 8. Let $s = m2^{-n}$ be a dyadic rational. Then for any $k \ge n$, we have $f_k(s) = 0$. Hence conclude that $g(s) = \sum_{k=0}^{n-1} f_k(s)$.
- 9. Let $x \in \mathbb{R}$ be fixed. Choose dyadic rationals s_n, t_n as in Item 2. Let $q_n := g(t_n) g(s_n)/(t_n s_n)$. In view of Item 3, to show that g is not differentiable at x, it is enough to show that the sequence $([g(t_n) g(s_n)]/(t_n s_n))$ does not converge.

Hint: Write $s_n = j/2^n$ so that $t_n = (j+1)/2^n$. For $0 \le k < n$, observe that $2^k(t_n - s_n) < 1/2$. Hence $2^k s_n$ and $2^k t_n$ lie in the same half intervals of [0, 1]. Use this to show that $q_n = \sum_{k=0}^{n-1} \pm 1$. Conclude that (q_n) cannot converge.

10. Conclude that g is continuous on \mathbb{R} but not differentiable at any point of \mathbb{R} .