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A more appropriate title would be “drawing graphs of functions”. Whenever we see a
function, we think of its graph, as this is more geometric. In elementary mathematics, we
draw the graph of a function by plotting some points (z, f(x)) and joining them via straight
lines and ‘smooth’ curves. This is a crude way of plotting curves. A much more refined
method is to use (results of) differential calculus. In fact, calculus allows us to choose a
good set of points (z, f(x)) and also tells us how to connect these points by appropriate
smooth curves.

1 Preliminaries

In this section we shall collect some basic definitions and results which are needed for our
purpose.

Let I or J stand for an interval in R. We all know the significance of the sign of the
derivative of f:I — R. If f'(c) > 0 for some ¢ € I, then f is increasing in some open
interval (not necessarily I!) containing c¢. A point ¢ in the open interval [ is said to be
a critical point of f if f'(¢) = 0. We then know that such a point is a relative (or local)
mazximum (respectively minimum) if f”(c) < 0 (respectively if f”(c) > 0).

We wish to exploit the second derivative of f so that we get more information about
the graph of a function.

Definition 1 Let f:(a,b) — R be differentiable and ¢ € (a,b). Let £(x) := f'(c)(x — ¢) +
f(c) be the tangent line to f at the point (¢, f(c)).

Definition 2 The graph of f (or f, in short) is said to be convez (respectively concave) at
(¢, f(c)) (or at c) if there is an open interval J containing ¢ such that for all z € J, z # ¢,

f(z) > (x) (respectively f(x) < {(z)).



See Figure 1. Convex is also known as “concave upward” and concave as “convex down-
ward” in some old-fashioned books.
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Figure 1: Convexity, Concavity and Points of Inflection

Geometrically this means that the points on the graph near to (¢, f(c)) are above or
below the tangent line at that point.

Definition 3 The point (¢, f(c)) or ¢ is said to be a point of inflection of f if there exists
an open interval I containing ¢ such that if x € I, then either

f(z) <0 ifz<ec and f'(z) >0 ifz>c, (1)

or
ff(z) >0 ifz<c and f(2) <0 ifz>c (2)

See Figure 1.

Loosely speaking, a point of inflection is a point where f” changes its sign. Geometri-
cally this means that the graph changes from convexity to concavity or vice versa at that
point. There is also a physical interpretation: If we consider z := f(t) as the position of
a moving particle, then 2/(t) = f'(t) is the velocity and x”(t) = f”(t) is the acceleration
of the particle. We say the particle is accelerating (respectively decelerating) at time ¢ is
f"(t) > 0 (respectively f”(t) < 0). Thus a point of inflection is the time at which the
particle switches from acceleration to deceleration or vice versa.

There is another definition which is also geometric though not equivalent to the one
given above: ¢ is a point of inflection if the tangent line at ¢ crosses the graph of the
function.

We would like to caution the reader that there is no uniform agreement on the correct
definition of an inflection point. I have chosen this, as this is very geometric and least
technical and can be taught at the first year B.Sc class.



One then has the following theorem.

Theorem 1 Let f:(a,b) — R be differentiable. Assume that f"(c) exists at ¢ € (a,b).
Then

(1) If f"(c) > 0, then f is convex at c.
(2) If f"(c) <0, then f is concave at c.
(3) If ¢ is point of inflection, then f"(c) = 0.
U

Proof The proof uses mean value theorem.
i) To show that the graph of f is convex at ¢, we need to show that f(z)—¢(x) > 0 for
all x # ¢ in an open interval containing c¢. We have

fl@) = lx) = f(z) = flc) = f'(e)(x — o). (3)
See Figure 2.

Figure 2:

We first apply the mean value theorem to f either on [c,z] if x > coron [z,c] if x < c.
In any case, there exists a point x; between x and ¢ such that

f(@) = f(c) = f(z1)(x = ¢).
Substituting Equation () in Equation (3) gives

fl@) = L(z) = [f'(z1) = f(O)(x—0)
f'(x1) = f'(c)

= —————=(x; —¢)(x —¢).



Now if f”(¢) > 0, the difference quotient %:f(c)(:pl —c) must be positive for all x; # ¢ in
some open interval [ containing c¢. (Why?) But if z; is between x and ¢ (z1 —¢)(z—¢) > 0.
Hence for any x € I, x # ¢, we have f(x) — £(z) > 0. Thus (1) is proved.
(2) is proved similarly. (3) follows from (1) and (2).
U

Remarks 1
1. The vanishing of f”(c) is not sufficient for ¢ to be a point of inflection. For instance,
consider f(z):=z*. f is convex at 0.
2. f may have a point of inflection according to our definition but the second derivative
1
may fail to exist. Consider f(x):= x3. Or, consider

(2) = x? for x <0,
I\E) - 22 for x > 0.

Example 1 Let f(z) := 2®—62?+9z. Then f'(z) = 3(z—1)(z—3) and f"(z) = 6x —12.
f"(x) > 0if z > 2 and it is less than 2 < 2. Hence f is convex for # > 2 and concave for
xr < 2. x = 21is a point of inflection.

To sketch the graph of f, we determine the intervals on which f is monotone. Since
fl(x) =3(x—1)(x —3), f'(xr) >0is x < 1 orif x > 3. Hence f is increasing on (—oo, 1)
and (3,00). If x € (1,3), then f is decreasing on (1,3). Also, f'(1) = 0 = f’(3) and
(1) < 0 and f"(3) > 0 so that f(1) = 4 is a relative maximum and = = 3 is a relative
minimum with the minimum 0 = f(3). See Figure 3.
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Figure 3: Graph of 23 — 622 + 9z

Exercise 1 Determine the intervals of convexity, concavity and the points of inflection for
the following functions:
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Exercise 2 Show that a polynomial of degree n can have at most n—2 points of inflection.

Exercise 3 If f(r) = ax®+bz?, determine a and b so that the graph of f will have a point
of inflection at (1,2).

One more definition is needed if we want to discuss the behaviour of the graph as
T — Fo0.

Before we define the next concept, we invite the reader to draw the graphs of the
following functions: f(x) =1/(z—a) and g(x) = 1/(z—a)? for x # a. Check your pictures
with Figure 4 and Figure 5.

Figure 4: Graph of 1/(z — 2)

Definition 4 An affine (also called “linear” in analysis) function ¢(x) := ax + b is called
an asymptote for f as x — oo if

lim (f(x) — ¢(z)) = 0.

T—r00

A vertical line = a is an aymptote for f if lim,,,, f(z) is infinite or lim,,,_ f(z) is
infinite.
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Figure 5: Graph of 1/(z — 2)?

Examples cum Exercises

Let f(z) :=p(z)/q(z) = (ana™ + - - -+ ag)/(bpx™ + - - - + by) be a rational function.

If degree of p(x) = n < m = degree of ¢(x), then f has the z-axis as an asymptote.
If n = m, then f has a horizontal asymptote ¢(x) = a,/by,.

If n = m + 1, we then divide p by ¢ and write f(z) = ax 4+ b + ¢(z) where
lim, oo ¢(2) = 0 = lim,,_ ¢(x). The line ¢(x) := ax + b is a linear asymptote for

f.
If n > m + 1, then f has no non-vertical linear asymptote.

The vertical asymptote for a rational function corresponds to the zeroes of the de-
nominator.

The proof of these claims is an easy exercise in the theory of limits.
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Some Tips on Curve Tracing

We list below some of the points we must bear in mind while attempting to draw the graph
of a function.

1.

Look for symmetries of the given function f: Is it odd or even? (i.e. f(—z) = —f(z)
or f(—x) = f(x)). Is it periodic, i.e., is f(z + a) = f(z) for all z and a fixed a?

Look for the points (0, f(0)), (z, f(z) = 0), i.e., the point one of whose coordinates
lies on the coordinate axes.



7.
8.

Look for points (if any) at which f is not defined. In case such a point exists, study
the behaviour of f near the point.

Determine the behaviour of f as z becomes large through positive values (respectively
negative values). Find the asymptotes, if any.

Locate critical points, local maxima, local minima of f.
Find the intervals on which f is increasing or decreasing.
Determine the intervals on which f is concave or convex.

Locate the points of inflection of f.

We illustrate these points by means of examples.

Example 2 Let f(z) = 2* — 2%

1.

2.

f(—x) = f(x) and hence f is even.

At x =0, f(z) =0. Also f(z) =0 iff 2%(z> — 1) =0 iff = 0 or x + 1. Thus, at
x = 0,=%1, the graph intersects the y-axis at y = 0.

f is defined for all values of x.

As z — 400, f(z) =2*(2* — 1) = 00. Asz — —o0, f(z) = (—2)*((—2)* — 1) = .
To see this, we need only observe that if |z| > 1, 22 — 1 > 0.

f(z) = 423 — 22 = 22(22* — 1). The critical points of f are those x for which
f(x) =0, ie,2z(222 —1)=0orz=0o0r x = iﬁ. To understand the nature of

critical points, we find: f”(z) = 12z* — 2 so that f”(0) = —2 < 0 and z = 0 is a local
maximum. f”(+-) =121 —2=4> 0 and z = £ is a local minimum.

V2 V2
. We can therefore write
R = (—o0, —L) U (_—1, 0) U (0, L) U (L, 00) U {critical points}.
V2 2 V2 V2

f(x) = 1222 — 2 = 2(62% — 1).
f"(x) >0if 622 —1 >0 or 22 > %
f”(:p)<01f6:p2—1<00rx2<§.
That is, according as, |z| > 1/4/6 or |z| < 1/,/6. Hence f is convex on (—oo, —1/,/6)
and (1/4/6,00) and is concave on (—1/4/6,1/,/6).

Hence x = +1/,/6 are points of inflection. Note also that f”(z) = 12z*> —2. f"(z) =
0 < 622 =1 <= x=41//6. f"(x) = 24z so that f”(+1/\/6) # 0.

With this information, we can plot the curve Figure 6.



Figure 6: Graph of 2% — 22

Example 3 Let f(z) =2 + 1 = XL Then

1.
2.

8.

f(—x) = (Caltl _ 2?41 —f(z). Hence f is odd.

xT x

f is not defined at x = 0.

For x near 0 and greater than 0, % is positive and large. Similarly for x < 0 and near
0, % is negative and large. Hence f(z) = x+ % is large and positive for z > 0, x near
0 and large and negative for x < 0, x near 0.

fll@)=1—2%. f(x) >0if1—=% >0,0r1> % oraz®>1or|z]>1 Thus fis

2
increasing in (—oo, —1) and (1,00). f is decreasing in (—1,0) and (0, 1).

flx)=0iff 1 = Hora® =1orz ==+1. f"(z) =042, f’(=1) < 0and f’(1) > 0.
Thus £ = —1 is a local maximum and xz = 1 is a local minimum.

f(#) =0 <= 2+1=0 < z=-1 < 2% = —1. Therefore the graph of f
does not intersect the y-axis.

f"(x) = 225 and is less than 0 if 2 < 0 and greater than 0 if 2 > 0. Thus f is concave
on (—o0,0) and convex on (0, c0).

The line y = x is a linear asymptote. The line z = 0 is a vertical asymptote.

With these facts we plot the curve. See Figure 7.



Figure 7: Graph of z + 1/z

Example 4 Let f(z) = 2%/(z* — 1).
1. f(z) = f(—x). Thus f is symmetric.

2. We have

—2x
(22 —1)2
2(32% +1)

f'@) = La oy
Thus f'(z) =0 iff z = 0 and f”(0) < 0. Hence f(0) = 0 is a relative maximum.

3. Assume x > 0. (Enough to consider this case thanks to symmetry!) Then

f"(z) > 0 ifzx>1 and
ff(z) < 0 if0<z<l.

4. lim, o f(z) = 1.

5. Let us find the behaviour of f near z = 1. We note that xfil = xx—jl ﬁ so that
. 2 . 2 1
limz — 1, 25 ﬁ = oo whereas limz — 1_ 25 — = —oo.

See Figure 8.
Example 5 Consider f(z) = (2% —1)/(z + 2).

1. x = —2 is a vertical asymptote.



Figure 8: Graph of f(z) = 2?/(2* — 1)

2. f(z) =2 —2+ (3/(z+2)). Thus the line ¢(x) = z — 2 is a linear asymptote.

244 1
3. f(a) = % so that f/(z) = 0 iff 2 = —2 = v/3. f"(x) = 6/(x + 2)* which is
T
>0atz=-2—+v3and >0 at z = —2 + /3. Hence f has a relative maximum at
r=—2—+/3 and a minimum at z = —2 + /3.

See Figure 9.

Example 6 Consider f(z) = sin® .

1. Tt is periodic on [—, 7].
2. It is symmetric in x.

3. f'(x) = 2sinzcosx = sin 2z and f”(x) = 2cos2x. Hence f(z) = 0 iff z = 0, £nm,
fl(z) =0iff z =0,£n% and f"(z) =0iff x = £%, 3%, ... £20 .. Further, f”(0) =
2cos(0 > 0 implies that f attains a minimum at » = 0 and f"(£%) = 2cos(£m) <0
implies that f attains a maximum at z = 7. See Figure 10.

4. f"(x) = —4sin2x. f"(£5) =0 and f"(£%) = —(&sin 3) # 0 implies x = £7 is an
inflection point.

5. f(—=x) = f(x) implies f is even. f'(x) =sin22 >0iff 0 <2z <7iff 0 <2 <7 <0

iff 7 <2 <. Hence f is increasing in (0, 7) and decreasing in (7, 7).
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Figure 9: Graph of f(z) = JC;J:;

Figure 10: Graph of sin® z
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