Dihedral Groups

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

Dihedral groups are the group of symmetries of regular n-sided polygons. The reader
should study the cases when n = 3,4 while we look at the general case of n-gon.

We orient the regular n-gons as in Figure 1 (the left column picture) by locating a vertex
at the top, labeled as 1. We number the positions of the other vertices in clockwise order. It
is intuitively obvious that a symmetry o is completely determined (1) by the position of the
image, o(1), of the vertex at 1 under the symmetry o, and (2) by the position of the image,
0(2), of the vertex at 2 relative to o(1)—whether it is clockwise or anti-clockwise of o(1).
There are n choices for the vertex at 1 and for each such choice, there are are two choices for
the image of the vertex at 2. Thus there are 2n symmetries of the regular n-gon.

Let R denote the clockwise rotation by 27/n radians. Let p denote the reflection about
the vertical diameter through the vertex at 1. See Figures 1-2.

Figure 1: Rotation

The following are the consequences of our (intuitively obvious) observation: Any symmetry
can be obtained by
(1) A rotation of 27k/n radians. The corresponding group element is R¥ for 0 < k < n.
(2) A reflection or no reflection about the vertical diameter. The corresponding group
element is p! where I =0 or [ = 1.

Some typical situations are shown in Figures 1-2. (Keep in mind that the integers 1,2,3
etc., denote the positions of the vertices, not the vertices themselves.) If we denote the



Figure 2: Reflection

identity symmetry by I, we have the relations
R"=1=p?and Rp=pR™ ' = pR" L. (1)

The last relation is visualized in Figure 4. See also Observation 1

‘We now make three observations.

Observation 1. The symmetries R and p induce permutations of the integers 1,2,...,n
in terms of the positions assumed by the vertices. Thus R and p are represented by the
permutations
1 2 ... n 1 2 3 R )
R_(z 3 ... 1) andp_(1 n o (n—1) ... 2)' @

Thus, we have p(j) = n+2—jif j # 1 and p(1) = 1. Using this, it is easy to see that
Rp = pR™!. (Exercise!)

Figure 3: Rotation followed by reflection



Observation 2. From the relation Rp = pR~! we have
RFp=pR*, for 0 <k <n. (3)

This is seen as follows:

Observation 3. Each element of the group is of the form R*p! where 0 < k < n and=0,1.
Thus there are 2n elements of this form and we must prove that they are all distinct. If
REpl = R™p*, then we should have RF~" = p!=%. In geometric language this means that the
rotation RF~" must be a reflection p!~*. This is impossible, for example, the rotation will
have determinant 1 whereas a reflection will have determinant -1.

While this is perfectly a valid argument, we shall prove this purely algebraically using
only the relations (1).

Theorem 4. Let G be a group. Assume that there exist r,a € G such that, for some fized
integer n > 2

I.rm=1=a?andr* #1if0<k<n, and a # 1.

2. ra=ar .
Then G contains at least 2n elements of the form r*al where 0 < k < n and 1 = 0,1. The
group multiplication for these elements is given by

o k+i g ifl =0
ki gy )Tl i
ra’)(ra’) = S 4
(rFa)(ra’) {rkzalﬂ, ifl =1. )
Proof. As shown in Observation 2, we have
r*a = ar™" (or equivalently r*a = ar”). (5)

The relations in (5) are sufficient to prove those in (4).
The relation (4) is trivial when { = 0. If [ =1, then
(rkal)(riaj) = rk(alri)aj = rk(r_i l)aj = pFTighti,
Relation (4) shows that the set {r¥a': 0 < k < n,l = 0,1} is closed under multiplication and

contains the identity 1 = 7%a%. Since this is a finite set, it is a subgroup of G.

Thus to complete the proof, we need only show that the 2n elements r*al of the set are
all distinct. Suppose that r*a! = ra?. We first show that this implies that *~* = 1 and that
a!=7 = 1. Multiplying the equation on the left by —% and on the right by a7, we obtain

rk=ig=i =1,

To simplify the notation, let ¢ = k —i and d = [ — j. We therefore want to show that r¢a? = 1
implies that 7¢ = 1 and a® = 1. If d = 0,we are done. If d = %1, then, since a®> =1, a% = a
and hence 7¢a? = 1 is the same as saying that 7°a = 1 or equivalently ¢ = a. But then
ra = rr¢ = r°r = ar. By hypothesis, ra = ar~!. Hence we conclude that r = =1 or 72 = 1.
This contradicts our hypothesis (1). Thus we infer that d = 0.

Finally, if r° =1 for 0 < ¢ < n, then ¢ = 0, in view of the hypothesis (1). Therefore we
conclude that all elements of the form 7¥a! (0 < k < n, 1 =0,1) are distinct. U



Corollary 5. For every integer n > 2, there is a group of order 2n with properties 1 and 2
of the theorem. This group is unique up to isomorphism and will be denoted by Doy, .

Proof. The existence is given by the groups of symmetries of a regular n-gon. The uniqueness
is what Theorem 4 is about. U

Example 6. Consider Dg. Let the generators by 7, s with 7* = 1 = s and rs = sr—! as

the relations. The elements s,b := sr are of order 2. Also, the subgroup < s, sr > generated
by them is Dg, since r = sb €< s,sr >. However, not all elements can be written in the
form s'b7. For there are only four such distinct elements whereas |Dg| = 8. In particular, the
element sbs cannot be brought into the form s%b7.

Ex. 7. Let G, be the subgroup of GL(2,C) generated by the elements

27
0 1 en 0
= <1 0> and B := < 0 e_%> .

Show that G,is isomorphic to Do,.



Inverse of rotation followed by reflection

Figure 4: Some Elements of Dihedral Group



