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Dihedral groups are the group of symmetries of regular n-sided polygons. The reader
should study the cases when n = 3, 4 while we look at the general case of n-gon.

We orient the regular n-gons as in Figure 1 (the left column picture) by locating a vertex
at the top, labeled as 1. We number the positions of the other vertices in clockwise order. It
is intuitively obvious that a symmetry σ is completely determined (1) by the position of the
image, σ(1), of the vertex at 1 under the symmetry σ, and (2) by the position of the image,
σ(2), of the vertex at 2 relative to σ(1)—whether it is clockwise or anti-clockwise of σ(1).
There are n choices for the vertex at 1 and for each such choice, there are are two choices for
the image of the vertex at 2. Thus there are 2n symmetries of the regular n-gon.

Let R denote the clockwise rotation by 2π/n radians. Let ρ denote the reflection about
the vertical diameter through the vertex at 1. See Figures 1–2.
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Figure 1: Rotation

The following are the consequences of our (intuitively obvious) observation: Any symmetry
can be obtained by

(1) A rotation of 2πk/n radians. The corresponding group element is Rk for 0 ≤ k < n.
(2) A reflection or no reflection about the vertical diameter. The corresponding group

element is ρl where l = 0 or l = 1.

Some typical situations are shown in Figures 1–2. (Keep in mind that the integers 1,2,3
etc., denote the positions of the vertices, not the vertices themselves.) If we denote the
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Figure 2: Reflection

identity symmetry by I, we have the relations

Rn = I = ρ2 and Rρ = ρR−1 = ρRn−1. (1)

The last relation is visualized in Figure 4. See also Observation 1

We now make three observations.

Observation 1. The symmetries R and ρ induce permutations of the integers 1, 2, . . . , n
in terms of the positions assumed by the vertices. Thus R and ρ are represented by the
permutations

R =

(
1 2 . . . n
2 3 . . . 1

)

and ρ =

(
1 2 3 . . . n
1 n (n− 1) . . . 2

)

. (2)

Thus, we have ρ(j) = n + 2 − j if j 6= 1 and ρ(1) = 1. Using this, it is easy to see that
Rρ = ρR−1. (Exercise!)
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Figure 3: Rotation followed by reflection
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Observation 2. From the relation Rρ = ρR−1 we have

Rkρ = ρR−k, for 0 ≤ k < n. (3)

This is seen as follows:

Rkρ = R · · ·R
︸ ︷︷ ︸

k

ρ = (R · · ·R
︸ ︷︷ ︸

k−1

)(Rρ) = R · · ·R
︸ ︷︷ ︸

k−1

ρR−1 = · · · = ρR−k.

Observation 3. Each element of the group is of the form Rkρl where 0 ≤ k < n and l = 0, 1.
Thus there are 2n elements of this form and we must prove that they are all distinct. If
Rkρl = Rrρs, then we should have Rk−r = ρl−s. In geometric language this means that the
rotation Rk−r must be a reflection ρl−s. This is impossible, for example, the rotation will
have determinant 1 whereas a reflection will have determinant -1.

While this is perfectly a valid argument, we shall prove this purely algebraically using
only the relations (1).

Theorem 4. Let G be a group. Assume that there exist r, a ∈ G such that, for some fixed

integer n > 2
1. rn = 1 = a2 and rk 6= 1 if 0 < k < n, and a 6= 1.
2. ra = ar−1.

Then G contains at least 2n elements of the form rkal where 0 ≤ k < n and l = 0, 1. The

group multiplication for these elements is given by

(rkal)(riaj) =

{

rk+iaj , if l = 0

rk−ial+j , if l = 1.
(4)

Proof. As shown in Observation 2, we have

rka = ar−k (or equivalently r−ka = ark). (5)

The relations in (5) are sufficient to prove those in (4).

The relation (4) is trivial when l = 0. If l = 1, then

(rkal)(riaj) = rk(alri)aj = rk(r−ial)aj = rk−ial+j .

Relation (4) shows that the set {rkal : 0 ≤ k < n, l = 0, 1} is closed under multiplication and
contains the identity 1 = r0a0. Since this is a finite set, it is a subgroup of G.

Thus to complete the proof, we need only show that the 2n elements rkal of the set are
all distinct. Suppose that rkal = riaj . We first show that this implies that rk−i = 1 and that
al−j = 1. Multiplying the equation on the left by r−i and on the right by a−j , we obtain

rk−ial−j = 1.

To simplify the notation, let c = k− i and d = l− j. We therefore want to show that rcad = 1
implies that rc = 1 and ad = 1. If d = 0,we are done. If d = ±1, then, since a2 = 1, ad = a
and hence rcad = 1 is the same as saying that rca = 1 or equivalently rc = a. But then
ra = rrc = rcr = ar. By hypothesis, ra = ar−1. Hence we conclude that r = r−1 or r2 = 1.
This contradicts our hypothesis (1). Thus we infer that d = 0.

Finally, if rc = 1 for 0 ≤ c < n, then c = 0, in view of the hypothesis (1). Therefore we
conclude that all elements of the form rkal (0 ≤ k < n, l = 0, 1) are distinct.
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Corollary 5. For every integer n > 2, there is a group of order 2n with properties 1 and 2

of the theorem. This group is unique up to isomorphism and will be denoted by D2n.

Proof. The existence is given by the groups of symmetries of a regular n-gon. The uniqueness
is what Theorem 4 is about.

Example 6. Consider D8. Let the generators by r, s with r4 = 1 = s2 and rs = sr−1 as
the relations. The elements s, b := sr are of order 2. Also, the subgroup < s, sr > generated
by them is D8, since r = sb ∈< s, sr >. However, not all elements can be written in the
form sibj . For there are only four such distinct elements whereas |D8| = 8. In particular, the
element sbs cannot be brought into the form sibj.

Ex. 7. Let Gn be the subgroup of GL(2,C) generated by the elements

A :=

(
0 1
1 0

)

and B :=

(

e
2πi

n 0

0 e−
2πi

n

)

.

Show that Gnis isomorphic to D2n.
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Reflection followed by rotation

The inverse of rotation

Inverse of rotation followed by reflection

Figure 4: Some Elements of Dihedral Group
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