Discrete subgroups of \mathbb{R}^n

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Proposition 1. Let Γ be a discrete subgroup of \mathbb{R}^n . Then there exists a basis u_1, u_2, \ldots, u_n of \mathbb{R}^n such that

 $\Gamma = \{ x \in \mathbb{R}^n : x \text{ is of the form } x = n_1 u_1 + \dots + n_r u_r, n_i \in \mathbb{Z} \},\$

for some $r \leq n$.

Proof. The proof is an inductive construction. Let W be a vector subspace of \mathbb{R}^n such that $\Gamma \cap W = \mathbb{Z}w_1 + \cdots + \mathbb{Z}w_k$ for some basis w_1, \ldots, w_k of W. Such W's exist, for instance $W = \{0\}!$ Suppose that there exists $u \in \Gamma$ that does not lie in W. Consider the set B_W of points

$$a_1w_1 + \dots + a_kw_k + bu, \quad 0 \le a_i \le 1, 0 \le b \le 1.$$
 (1)

This set is bounded in \mathbb{R}^n . Since Γ is discrete, this set B_W can contain only finitely many points of Γ . Hence there exists a point $v \in B_W \cap \Gamma$ such that the coefficient b of u in v will be the least positive coefficient, say β . If $a_1w_1 + \cdots + a_kw_k + bu$ lies in Γ with $a_i, b \in \mathbb{Z}$, then b is a multiple of β . For, otherwise, by division algorithm, we write $b = m\beta + r$ where $0 < r < \beta$. Hence the element

$$a_1w_1 + \dots + a_kw_k + ru = (a_1w_1 + \dots + a_kw_k + bu) - m\beta u \in \Gamma$$

Since $w_j \in \Gamma$, by subtracting suitable multiples of w_j , we can assume that $0 \le a_j \le 1$. In other words, $a_1w_1 + \cdots + a_kw_k + ru \in B_W$. This contradicts our choice of μ . Thus we have established that

$$\Gamma \cap (W + \mathbb{R}u) = (\Gamma \cap W) + \mathbb{Z}v = \mathbb{Z}w_1 + \dots + \mathbb{Z}w_k + \mathbb{Z}u.$$

Note that the set $\{w_1, \ldots, w_k, u\}$ is a basis of $W + \mathbb{R}u$. If there exists $u' \in \Gamma$, we can proceed as above. This process has to stop in a finite number of steps.