Arithmetic-Geometric Mean Inequality Proof by Induction and Calculus

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Let x_1, \ldots, x_n be non-negative real numners. Their arithmetic mean and geometric mean are defined by

AM :=
$$
\frac{x_1 + \dots + x_n}{n}
$$
 and GM := $(x_1 \dots x_n)^{1/n}$.

The inequality of the title says that the arithmetic mean is greater than or equal to the geometric mean and equality holds iff all the x_i 's are equal.

We prove this by mathematical induction and calculus. For $n = 1$, the statement holds true with equality.

Assume that the AM–GM statement is true for any set of n non-negative real numbers.

Let $n + 1$ non-negative real numbers x_1, \ldots, x_{n+1} be given. We need to prove that

$$
\frac{x_1 + \dots + x_n + x_{n+1}}{n+1} - (x_1 \dots x_n x_{n+1})^{\frac{1}{n+1}} \ge 0,
$$
\n(1)

with equality only if all the $n + 1$ numbers are equal.

To avoid trivial cases, we may assume that all $n + 1$ numbers are positive.

We consider the last number x_{n+1} as a variable and define the function

$$
f(t) = \frac{x_1 + \dots + x_n + t}{n+1} - (x_1 \dots x_n t)^{\frac{1}{n+1}}, \qquad t > 0.
$$

It suffices to show that $f(t) \geq 0$ for all $t > 0$, with $f(t) = 0$ only if x_1, \ldots, x_n and t are all equal. We employ the first and second derivative tests of calculus.

We have

$$
f'(t) = \frac{1}{n+1} - \frac{1}{n+1} (x_1 \cdots x_n)^{\frac{1}{n+1}} t^{-\frac{n}{n+1}}, \qquad t > 0.
$$

We are looking for points t_0 such that $f'(t_0) = 0$. Thus we obtain

$$
(x_1 \cdots x_n)^{\frac{1}{n+1}} t_0^{-\frac{n}{n+1}} = 1.
$$

That is, t_0 satisfies

$$
t_0^{\frac{n}{n+1}} = (x_1 \cdots x_n)^{\frac{1}{n+1}}.
$$

Or what is the same

$$
t_0=(x_1\cdots x_n)^{\frac{1}{n}}.
$$

That is, the only critical point t_0 of f is the geometric mean of x_1, \ldots, x_n . Note that if $t = Rⁿ$ for very large $R \gg 1$, $f(t) \to \infty$ as $R \to \infty$. Hence it follows that f has a strict global minimum at t_0 . Note that $f'' > 0$ and hence the function is convex. Hence t_0 must be a point of global minimum. We now compute $f(t_0)$.

$$
f(t_0) = \frac{x_1 + \dots + x_n + (x_1 \dots x_n)^{1/n}}{n+1} - (x_1 \dots x_n)^{\frac{1}{n+1}} (x_1 \dots x_n)^{\frac{1}{n(n+1)}}
$$

=
$$
\frac{x_1 + \dots + x_n}{n+1} + \frac{1}{n+1} (x_1 \dots x_n)^{\frac{1}{n}} - (x_1 \dots x_n)^{\frac{1}{n}}
$$

=
$$
\frac{x_1 + \dots + x_n}{n+1} - \frac{n}{n+1} (x_1 \dots x_n)^{\frac{1}{n}}
$$

=
$$
\frac{n}{n+1} (\frac{x_1 + \dots + x_n}{n} - (x_1 \dots x_n)^{\frac{1}{n}}).
$$

The term withing brackets in the last step is non-negative in view of the induction hypothesis. The hypothesis also says that we can have equality only when x_1, \ldots, x_n are all equal. In this case, their geometric mean t_0 has the same value, Hence, unless $x_1, \ldots, x_n, x_{n+1}$ are all equal, we have $f(x_{n+1}) > 0$. This completes the proof.