Double Series

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Definition 1. Let $a: \mathbb{N} \times \mathbb{N} \to \mathbb{C}$ be a map. Then we say that a is a double sequence and we usually let $a_{ij} = a(i, j)$ and $(a_{ij}) = a$. We say that (a_{ij}) is convergent if there exists a complex α with the property: if $\varepsilon > 0$ is given, there exists $N \in \mathbb{N}$ such that $|a_{mn} - \alpha| < \varepsilon$ for all $m, n \geq N$. We then write $\lim_{m,n\to\infty} a_{mn} = \alpha$.

Ex. 2. Prove that (a) $\lim_{m,n} \frac{1}{m+n} = 0$ and (b) $\left(\frac{m}{m+n}\right)$ is not convergent.

Theorem 3. Assume that $\lim_{m,n} z_{mn}$ exists and that for each m, $\lim_{n\to\infty} z_{mn}$ exists. Then, $\lim_{m\to\infty} (\lim_{n\to\infty} z_{mn})$ exists and is equal to $\lim_{m,n\to\infty} z_{mn}$.

Proof. Let $\lim_{m,n} z_{mn} = z$ and $\lim_{n\to\infty} z_{mn} = z_m$ for $m \in \mathbb{N}$. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that

$$|z_{mn} - z| < \varepsilon \text{ for } m, n \ge N.$$
(1)

Also, for given m, there exists $N_m \in \mathbb{N}$ such that

$$|z_{mn} - z_m| < \varepsilon \text{ for } n \ge N_m.$$
⁽²⁾

We claim that $|z_m - z| < 2\varepsilon$ for $m \ge N$. For choose $n > \max N, N_m$. The claim now follows from Eq. 1 and Eq. 2.

Ex. 4. Show that $\lim_{m,n} \frac{(-1)^n}{m}$ exists but not $\lim_{n\to\infty} \frac{(-1)^n}{m}$ for any m.

Corollary 5. Assume that (1) for each m, $\lim_{n\to\infty} z_{mn}$ exists, (2) for each n, $\lim_{m\to\infty} z_{mn}$ exists and (3) $\lim_{m,n} z_{mn}$ exists. Then $\lim_{m\to\infty} (\lim_{n\to\infty} z_{mn})$ and $\lim_{n\to\infty} (\lim_{m\to\infty} z_{mn})$ exist and are equal.

Ex. 6. The double sequence in Ex. 2.b shows that

 $\lim_{m \to \infty} (\lim_{n \to \infty} z_{mn}) \text{ and } \lim_{n \to \infty} (\lim_{m \to \infty} z_{mn}) \text{ exist and are not equal.}$

Ex. 7. Let (x_{mn}) be bounded. Assume that it is an increasing sequence of each of its variable. Then it is convergent.

Theorem 8. Assume that each term x_{mn} of a double sequence is real. Assume that, for each m, $(x_{mn})_{n=1}^{\infty}$ is an increasing sequence of n and that, for each n, $(x_{mn})_{m=1}^{\infty}$ is an increasing sequence of m. If one of the limits $\lim_{m,n\to\infty} x_{mn}$, $\lim_{m\to\infty} (\lim_{m\to\infty} x_{mn})$, $\lim_{m\to\infty} (\lim_{m\to\infty} x_{mn})$, $\lim_{m\to\infty} (\lim_{m\to\infty} x_{mn})$ exists, then the other two limits also exist and all three are equal.

Analogous result holds if the word increasing is substituted by the word decreasing.

Proof. Let $\lim_{m,n} x_{mn} = x$. Then $x_{mn} \leq x$ for all m, n. (Why?) Hence, for each $m, (x_{mn})_{n=1}^{\infty}$ is a bounded increasing sequence and so $\lim_{n\to\infty} x_{mn}$ exists. Similarly, $\lim_{m\to\infty} x_{mn}$ exists. Therefore, by the corollary, the other two iterated limits exist and are equal.

Let $\lim_{m\to\infty} (\lim_{n\to\infty} x_{mn})$ exist. Let $\lim_{n\to\infty} x_{mn} = y_m$ for $m \in \mathbb{N}$. Let $\lim_m y_m = y$. Since x_{mn} increases with $n, x_{mn} \leq y_m$ for all n. Since x_{mn} increases with $m, (y_m)$ is an increasing sequence of m so that $y_m \leq y$ for all m. Thus, we have

$$x_{mn} \leq y_m \leq y$$
 for all m, n .

Then (x_{mn}) converges by Ex. 7. By the first part, $\lim_{m \to \infty} (\lim_{m \to \infty} x_{mn})$ exists and all three limits are equal.

Definition 9. Let (z_{mn}) be a double sequence. Let $s_{mn} := \sum_{i=1}^{m} \sum_{j=1}^{n} z_{ij}$. If the double sequence (s_{mn}) converges to s, we say that the double series $\sum_{m,n} z_{mn}$ converges and its sum is s.

Lemma 10. If $\sum_{m,n} a_{mn}$ converges to s and if $\sum_n a_{mn}$ converges for each m, then $\sum_m (\sum_n a_{mn})$ converges to s.

Proof. Follows from Th. 3.

Ex. 11. Let $\sum_{m,n} a_{mn}$ and $\sum_{m,n} b_{mn}$ be double series of positive terms. Assume that $a_{mn} \leq b_{mn}$ and that $\sum_{m,n} b_{mn}$ converges. Then $\sum_{m,n} a_{mn}$ converges.

Theorem 12. Let (a_{mn}) be a double sequence in \mathbb{C} . If any one of the series $\sum_{m,n} |a_{mn}|$, $\sum_{m} (\sum_{n} |a_{mn}|), \sum_{n} (\sum_{m} |a_{mn}|)$ converges, then all the series $\sum_{m,n} a_{mn}, \sum_{m} \sum_{n} a_{mn}, \sum_{n} \sum_{m} a_{mn}$ converge and all have the same sum.

Proof. We first prove the result when the double sequence is real. Let

$$b_{mn} := (|a_{mn}| + a_{mn})/2$$
 and $c_{mn} := (|a_{mn}| - a_{mn})/2$.

Then $b_{mn} \ge 0$ and $c_{mn} \ge 0$, $a_{mn} = b_{mn} - c_{mn}$ and

$$0 \le b_{mn}, c_{mn} \le |a_{mn}|.$$

If one of the three series converges, so does the corresponding series with $|a_{mn}|$ replaced by b_{mn} by the comparison test in Ex. 11. Then, by Th. 8, $\sum_{m,n} b_{mn}$, $\sum_m \sum_n b_{mn}$ and $\sum_n \sum_n b_{mn}$ all converge to the same sum. Similar result holds for the series involving c_{mn} 's. Taking differences of the *b* and *c* series yield the result for the real case.

If a_m are complex, we let $a_{mn} := x_{mn} + iy_{mn}$. Since $|x_{mn}|, |y_{mn}| \le |a_{mn}|$, if one of the three *a* series converge, then the corresponding *x* and *y* series both converge.

Ex. 13. Find, when they exist, the double limit $\lim_{m,n\to\infty} x_{mn}$ and the iterated limits $\lim_{m} \lim_{n \to \infty} x_{mn}$ and $\lim_{n \to \infty} \lim_{m \to \infty} x_{mn}$ and $\lim_{m \to \infty} \lim_{m \to \infty} x_{mn}$ of the sequence whose (m, n)-th term is (i) $\frac{m-n}{m+n}$, (ii) $\frac{m+n}{m^2}$, (iii) $\frac{m+n}{m^2+n^2}$ and (iv) $\frac{mn}{m^2+n^2}$.

Ex. 14. Does there exist an unbounded convergent double sequence?

Ex. 15. Is there an analogue of the absolute convergence implies convergence principle for double series?