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To simplify the notation, assume that the function is defined on the interval [0, 1]. This
involves no loss of generality because if f is defined on some other interval, one can make a
linear change of variable which maps the domain of f to [0, 1].

The case f(x) = 1 −
√

1− x: Let us start by demonstrating a few special cases of the
theorem, starting with the case f(x) = 1−

√
1− x. In this case, we can use the ancient Baby-

lonian method of computing square roots to construct polynomial approximations. Define
the polynomials P0, P1, P2, . . . recursively as

P0(x) = 0

Pn+1(x) =
1

2

(
Pn(x)2 + x

)
It is an obvious consequence of this definition that, if 0 ≤ x ≤ 1 then 0 ≤ Pn(x) ≤ 1 for all n.
It is equally obvious that each Pn is a monotonically increasing function on the interval [0, 1].
By subtracting the recursion from itself, cancelling, and factoring, we obtain the relation

Pn+2(x)− Pn+1(x) =
1

2
(Pn+1(x) + Pn(x))(Pn+1(x)− Pn(x))

From this relation, we conclude that Pn+1(x) ≥ Pn(x) for all n and all x in [0, 1]. This implies
that limn→∞ Pn(x) exists for all x in [0, 1]. Taking the limit of both sides of the recursion
that defines Pn and simplifying, one sees that limn→∞ Pn(x) = 1−

√
1− x. The relation also

implies that Pn+1(x)− Pn(x) is also a monotonically increasing function of x in the interval
[0, 1] for all n. Therefore,

Pn+1(x)− Pn(x) ≤ Pn+1(1)− Pn(1)

Summing over n and cancelling, one sees that

Pm(x)− Pn(x) ≤ Pm(1)− Pn(1)

whenever m > n. Taking the limit as m approaches infinity, one concludes that

1−
√

1− x− Pn(x) ≤ 1− Pn(1)

Since the Pn’s converge, for any ε > 0, there exists an n such that 1 − Pn(1) < ε. For this
value of n, |f(x)− Pn(x)| < ε, so the Weierstrass approximation theorem holds in this case.
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The case f(x) = |x− c|: Next consider the special case f(x) = |x− c|, where 0 ≤ c ≤ 1. A
little algebra shows that √

(x− c)2 + ε2/4− |x− c| ≤ ε/2

By the case of the approximation theorem already proven, there exists a polynomial P such
that

|
√

(x− c)2 + ε2/4− P (x)| < ε/2

when x ∈ [0, 1]. Combining the last two inequalities and applying the triangle inequality,
one sees that |f(x)− P (x)| < ε, so the Weierstrass approximation theorem holds in the case
f(x) = |x− c|.

The case of piecewise linear functions: A corollary of the result just proven is the Weier-
strass appriximation theorem for piecewise linear functions. Any piecewise linear function φ
can be expressed as

φ(x) = b+
N∑

m=0

am|x− cm|

for suitable constants a0, . . . , aN , b, c0, . . . , cN . By the result just proven, there exist polyno-
mials P0, . . . , PN such that

|am|x− cm| − Pm| < ε/N

By the triangle inequality, ∣∣∣∣∣φ(x)− b−
N∑

m=0

Pm

∣∣∣∣∣ < ε

The general proof: Having succeeded in proving all these special cases, we now have the
courage to attack the general theorem.

In light of the case just proven, it suffices to show that if f is continuous on [0,1] then for all
ε > 0 there exists a piecewise-linear function φ such that for all x in [0, 1], |f(x)−φ(x)| < ε/2.
For, if such a function exists, then there also exists a polynomial P such that |φ(x)−P (x)| <
ε/2, but then |f(x)− P (x)| < ε.

Since the interval [0, 1] is compact, f is uniformly continuous. Hence, for all ε > 0 there
exists an integer N such that |f(x)− f(y)| < ε/2 whenever |x− y| ≤ 1/N .

Define φ by the following two conditions: If m is an integer between 0 and N , φ(m/N) =
f(m/N). On any interval [m/N, (m+ 1)/N ], φ is linear.

For every point x in the interval [0, 1], there exists an integer m such that x lies in the
subinterval [m/N, (m+1)/M . Since a linear function is bounded by its values at the endpoints,
φ(x) lies between φ(m/N) = f(m/N) and φ((m + 1)/N) = f((m + 1)/N). It follows that
|f(m/N)−φ(x)| ≤ ε/2, since |f(m/N)− f((m+ 1)/N)| ≤ ε/2. Because |x−m/N | ≤ 1/N , it
is also true that |f(m/N)− f(x)| ≤ ε/2. Hence, by the triangle inequality, |f(x)− φ(x)| < ε.
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