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1 Introduction

Abstract

This article has some very annoying typographical mistakes which may lead you to
think they are mathematical in nature! Beware! I did not proof-read them carefully. I
would appreciate anybody who send me the list of corrections. This exposition is accessible
to all those who need the result in their domain but are not experts in analysis.

Let Ω be an open set in Rn and L be a linear partial differential operator on Ω. That is,

L =
∑
|α|≤k

aαD
α,

where α = (α1, . . . , αn), αi ∈ Z+, Dα = ( ∂
∂x1

)
α1 · · · ( ∂

∂xn
)
αn

, aα ∈ C∞(Ω). We say that the
order of L is k if aα 6= 0 for some α with |α| = k.

The main question of these lectures is the following question: Consider an equation of the
type Lu = f in Ω. Assume u ∈ Ck(Ω) and f ∈ Cr(Ω). Then is u ∈ Ck+r(Ω)?

Regularity theorem essentially says that under certain conditions on L, the answer is in
the affirmative. (Not quite in these words — however for the time being this will do!)

We are already familiar with many cases where such a thing happens:

(1) Let f : R → R be Ck. Let u : R → R be a C1-solution of the equation du
dx = f . Then

u is in fact Ck+1.

(2) Ω = R2 and L = ∂2

∂x2
+ ∂2

∂y2
. u ∈ C2(Ω) is said to be harmonic if Lu = 0. Here 0 is

a C∞ function and so we would expect that if u satisfies Lu = 0, then u ∈ C∞(R2). Indeed
this is true since if v is a harmonic conjugate of u, then f = u+ iv is an analytic function of
a complex variable and hence infinitely differentiable. So its real part, which is u, is infinitely
differentiable.

(3) Let Ω = C and let ∂u
∂z = 0, u ∈ C1(Ω). Then u is analytic and hence C∞.

But the following example shows that for regularity theorem we need some conditions on
L.

1



(4) Let u ∈ C2(R). Consider the wave operator L = ∂2

∂x2
− ∂2

∂y2
. By the transformation

X = x + y, Y = x − y, the equation ( ∂2

∂x2
− ∂2

∂y2
)u = 0 is transformed into the equation

∂2

∂X∂Y u = 0. Now if we take f(X,Y ) = h(X), where h(X) ∈ C2 but not in C3, then
∂2

∂X∂Y f = 0, but f is not in C3.

2 Weak Derivatives

Let Ω ⊂ Rn. Let L be differential operator of order k and let u ∈ Ck(Ω), f ∈ C0(Ω) such
that Lu = f . Also let φ ∈ C∞c (Ω). Then 〈Lu, φ〉 = 〈f, φ〉, where 〈h, g〉 =

∫
h(x)g(x) dx. For

a moment let us suppose that L = ∂
∂x1

. Then 〈Lu, φ〉 = 〈f, φ〉 means∫
∂u

∂x1
φ(x) dx =

∫
f(x)φ(x) dx (1)

Integrate the left hand side of Eq. 1 in parts. The first term (the boundary term) is zero
because φ ∈ C∞0 (Ω) and Ω is open. So we get

−
∫
u
∂φ

∂x1
dx =

∫
f(x)φ(x) dx

Similarly, if L = Dα we get

(−1)|α|
∫
uDαφdx =

∫
f(x)φ(x) dx (2)

Conversely, let Eq. 2 be satisfied for all φ ∈ C∞c (Ω). Then 〈Dαu, φ〉 = 〈f, φ〉 for all φ ∈ C∞c (Ω).
That is, 〈Dαu− f, φ〉 = 0 for all φ ∈ C∞c (Ω). One then easily shows that Dαu = f . (See
exercise below).

Ex. 1. Let ψ ∈ C(Ω) such that
∫

Ω ψφ = 0 for all φ ∈ C∞c (Ω). Then show that ψ = 0.

Now we make the following definition:

Definition 2. Let u ∈ L1
loc(Ω) (i.e., for all K ⊂ Ω K compact, we have

∫
K |u| <∞). We say

that Dαu = f in Ω, in the weak sense if (−1)|α|
∫
uDαφ =

∫
f(x)φ(x) dx for all φ ∈ C∞c (Ω).

Note that in the case where u ∈ C |α|(Ω), Dαu = f in the weak sense iff Dαu = f in the
calculus or classical sense.

Example 3. Let u : R → R be defined by u(x) =

{
x if 0 < x ≤ 1

1 if 1 < x < 2
. We claim that v :={

1 if 0 < x ≤ 1

0 if 0 < x < 2
is the weak derivative of u. To prove this, we need to show that

∫ 2

0
uϕ′ = −

∫ 2

0
vϕ, for ϕ ∈ C∞c ((0, 2)).

We split the integral on the left side into two:
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∫ 2

0
uϕ′ =

∫ 1

0
xϕ′ +

∫ 2

1
ϕ′

= [xϕ(x)]10 −
∫ 1

0
ϕ+ ϕ(2)− ϕ(1)

= ϕ(1)−
∫ 2

0
ϕ(x)− ϕ(1), since ϕ(2) = 0

= −
∫ 2

0
vϕ.

The simplicity of the above argument should not lull the reader into false confidence. So,
let us look at another example.

Example 4. Let u : R → R be defined by u(x) =

{
x if 0 < x ≤ 1

2 if 1 < x < 2
. You may be tempted

to guess a weak derivative of u . We claim that u has no weak derivatives. Assume that v is
a weak derivative of u. Hence we have∫ 2

0
uϕ′ = −

∫ 2

0
vϕ, for ϕ ∈ C∞c ((0, 2)). (3)

Let us work on the left side:∫ 2

0
uϕ′ =

∫ 1

0
xϕ′ +

∫ 2

1
2ϕ′

= [xϕ]10 −
∫ 1

0
ϕ+ 2(ϕ(2)− ϕ(1))

= −ϕ(1)−
∫ 1

0
ϕ+ 2ϕ(2)− 2ϕ(1)

= ϕ(2)− ϕ(1)−
∫ 1

0
ϕ

= −ϕ(1)−
∫ 1

0
ϕ. (4)

From Eq. 3 and Eqellip:eq4, it follows that v must satisfy the equation∫ 2

0
vϕ = ϕ(1) +

∫ 1

0
, for all ϕ ∈ C∞c (0, 2). (5)

We choose ϕn such that ϕ(1) = 1 and support of ϕn shrinks to the point 1. Then we have

1 +

∫ 1

0
ϕn =

∫ 2

0
vϕn.

Using the dominated convergence theorem, we get 1 = 0. This contradiction proves our claim.

For every L there exists a unique differential operator L∗ (called the formal adjoint of L)
defined by the equation 〈Lu, φ〉 = 〈u, L∗φ〉 for all u, φ ∈ C∞c (Ω). If L =

∑
aα(x)Dα then L∗

is given by L∗u =
∑

(−1)|α|Dα(aα(x))u(x).
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Definition 5. Let u ∈ L1
loc(Ω) and f ∈ C(Ω). u is said to be a generalised solution or a weak

solution of Lu = f on Ω if and only if 〈u, L∗φ〉 = 〈f, φ〉 for all φ ∈ C∞c (Ω).

If u ∈ Ck(Ω) (where k is the order of L) then it is easily seen that u is a generalised
solution of Lu = f if and only if u is a classical solution.

3 Distributions and their Derivatives

Definition 6. A distribution u on Ω is a linear map u : C∞c (Ω) → C such that given a
compact subset K ⊂ Ω there exist k ∈ Z+ and CK > 0 such that

|u(φ)| ≤ CK
∑
|α|≤k

sup
K
|Dαφ| for all φ ∈ C∞c (Ω).

Note that for each k and K, pk,K(φ) =
∑
|α|≤k supK |Dαφ| defines a seminorm on C∞c (Ω)

and the above condition means that u is continuous with respect to the family of seminorms
pk,K .

Example 7. Let f ∈ L1
loc(Ω). Define uf (φ) =

∫
f(x)φ(x) dx for φ ∈ C∞c (Ω). Then uf is a

distribution with k = 0 in the definition. We say that uf is represented by f .

Example 8. Let µ be a regular Borel measure. Define u(φ) =
∫
φdµ. Then u is a distribution

with k = 0.

Example 9. Assume that 0 ∈ Ω. Define δ(φ) = φ(0). Then δ is a distribution with k = 0.
But δ cannot be represented by any f i.e., δ 6= uf for any f ∈ L1

loc(Ω). δ is called the Dirac
distribution.

Notation. We denote the space of distributions over Ω by D′(Ω). Example 1 shows that
D′(Ω) ⊃ L1

loc(Ω). If u is a distribution and φ ∈ C∞c (Ω) we denote u(φ) by (u, φ).

Definition 10. The i-th partial derivative ∂u
∂xi

of a distribution u is the distribution defined

by ( ∂u∂xi , φ) := −(u, ∂φ∂xi ).

The higher derivatives are defined in an analogous way by the equation (Dαu, φ) :=
(−1)|α|(u,Dαφ).

Ex. 11. Show that ∂u
∂xi

is a distribution. More generally, show that Dαu is a distribution.

Ex. 12. Let u = uf , where f ∈ Ck(Ω). Then Dαf makes sense for all α with |α| ≤ k and∫
Dαfφ = (−1)|α|

∫
uDαφ, by integration by parts, since f has compact support. This shows

that Dαuf = uDαf .

Ex. 13. Define the Heaveside function H ∈ L1
loc(R) by H(x) =

{
0 if x ≤ 0

1 if x > 0
. Then d

dxuH is

the Dirac distribution δ.

Definition 14. Let L be a linear partial differential operator on Ω. We say that Lu = f on
Ω in the distribution sense if (u, L∗φ) = 〈f, φ〉 for all φ ∈ C∞c (Ω).

Ex. 15. If u = ug for g ∈ L1
loc, then Lu = f in the distribution sense if and only if Lg = f

in the weak sense.
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4 Fourier Series

Consider the set S1 = {z ∈ C | |z| = 1}. The set {χn = einθ, n ∈ Z, 0 ≤ θ ≤ 2π} is a
complete orthonormal basis for L2(S1) which is nothing other than the L2([0, 2π]) the space
of square integrable periodic functions with period 2π. If f ∈ L2(S1), f has the Fourier series
representation f =

∑
(f, χn)χn. Here the series converges in the L2 sense. We also have the

Parseval relation ‖f ‖2L2(S1) =
∑
|f̂(n)|

2
, where f̂(n) = 〈f, χn〉L2 .

The following observation is the cornerstone for our analysis of the problem.

Lemma 16. Assume f ∈ C1(S1). The partial sums of the Fourier series of f converges to
f uniformly on S1, i.e., in the supremum norm on C(S1).

Proof. Let sn(f) :=
∑
|k|≤n fne

−inx denote the n-th partial sum of the Fourier series. Now

we claim that the Fourier series for f ′ ∈ C0(S1) ⊂ L2 is given by f ′ =
∑
f̂ ′(n)einx where

f̂ ′(n) = −inf̂(n). For, observe that we have, by an integration by parts,

f̂ ′(n) :=
1

2π

∫ 2π

0
f ′(t)e−int dt =

1

2π

[
f(t)e−int |2π0 −

∫ 2π

0
f(t)e−int dt

]
= inf̂(n).

Hence ∑
n6=0

|f̂(n)| =
∑
n6=0

|f̂ ′(n)|
|n|

≤ (
∑
n6=0

|f̂ ′(n)|
2
)
1
2 (
∑
n6=0

1

n2
)
1
2

< ∞ since f ′ ∈ C(S1) ⊆ L2(S1).

This implies that the series
∑
f̂(n)einx is uniformly convergent by Weierstrass M-test. Hence

sn(f) tends to a continuous function g as n→∞ in the supremum norm. But the supremum
norm is stronger than the L2-norm: ‖f ‖2L ≤

√
2π ‖f ‖∞. Hence sn(f) → g in the L2-norm.

But already sn(f) → f in the L2-norm. Therefore f = g a.e. But f and g are continuous.
Therefore f ≡ g.

Ex. 17. Let f ∈ C∞(S1). Show that if f =
∑
f̂(n)einx is the Fourier series representation

of f , then Dkf is given by
∑
f̂(n)(in)keinx. This series converges uniformly to Dkf .

Remark 18. We have f̂ ′(n) = inf̂(n). Now
∑
|f̂ ′(n)|

2
< ∞ by Parseval relation. Hence

|nf̂(n)| → 0 as n → ∞. Or in Landau’s notation f̂(n) = o( 1
|n|). Thus the regularity of f

is reflected in the behaviour of the Fourier coefficients f̂(n) as |n| → ∞. More generally,

if f ∈ Ck(S1), then f̂(n) = o( 1
|n|k

). This remark is crucial and lays the foundation for our

approach to the question raised in the introduction.

Now let us consider the r-dimensional torus T = S1 × . . . × S1 (r times). We adopt
the following notation: x := (x1, . . . , xr), n = (n1, . . . , nr) ∈ Zr, n · x = n1x1 + . . . + nrxr,
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χn(x) := ein·x and fn := 〈f, χn〉, the L2-inner product of the functions. Let f ∈ L2(T). Then
f has the Fourier series representation

f =
∑
n∈Zr

fne
inx in L2(T).

The following exercise, though trivial, is repeatedly used in the sequel, often without
explicit mention.

Ex. 19. Let f : Rn\{0} → R be defined by f(x) := ‖x‖α for α ∈ R. Then f ∈ L1(Rn\B(0, ε))
for any ε > 0 iff α < −n. Hint: Use the spherical polar coordinates and the change of variable
formula.

Ex. 20. Let k > r/2. If f ∈ Ck(T), then as in the one dimensional case show that the
Fourier series of f converges uniformly to f . Hint: Last exercise may be of use.

Ex. 21. If f ∈ C∞(T) and if f(x) =
∑

n∈Zr fne
in·x then Dαf has as its Fourier series∑

fn(in)αeinx, where (in)α = (in1)α1 · · · (inr)αr .

5 The Laplacian ∆ and Sobolev Spaces

The Laplacian ∆ =
∑r

i=1
∂2

∂xi2
maps C2(T) to C(T). We would like to extend this to an

operator on L2(T). We would like to define ∆ : L2(T)→ L2(T) as follows: Let f ∈ L2(T), f =∑
fne

inx. Define ∆f =
∑
fn(−|n|2)einx. But there is one problem — this series may not

converge in the L2 norm. For example take f =
∑

n∈Z\{0}
1
ne

inx. On the other hand, we

can define ∆ : C∞(T) → C∞(T) by ∆f =
∑
fn(−|n|2)einx and since C∞(T) is dense in

L2(T) we can ask whether ∆ can be extended to the whole of L2(T) continuously. But this
is not possible either. For ∆ : C∞(T) → C∞(T) is not continuous, as the bounded set
{einx | n ∈ Zr} in L2(T) is taken to the unbounded set {−|n|2einx | n ∈ Zr} in L2(T).

So in order to define ∆ in a meaningful way, we proceed as follows. Consider the collection
of formal series H = {

∑
n∈Zr vne

inx}. Fix s ∈ Z. Look at those vn’s for which
∑
|n|2s|vn|2 <

∞. We have a natural seminorm on this space given by
∑
vne

inx 7→ (
∑
|n|2s|vn|2)

1
2 . We

modify this seminorm to a norm
∑

((1 + |n|2)s|vn|2)
1
2 . We call this normed linear space the

s-th Sobolev space and denote it by Hs.

Definition 22. Let s ∈ Z. The s-th Sobolev space Hs is defined by

Hs = {v =
∑

(formal sum)

vne
inx | ‖v‖2s :=

∑
n∈Zr

(1 + |n|2)s|vn|2 <∞},

= {v = (vn)n∈Zr | ‖v‖2s :=
∑
n∈Zr

(1 + |n|2)s|vn|2 <∞}.

Remark 23. Hs is a Hilbert space. If u, v ∈ Hs where u =
∑
une

inx, v =
∑
vne

inx, we
define

〈u, v〉s =
∑

unvn(1 + |n|2)s (6)
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〈u, v〉s makes sense since

|〈u, v〉s| ≤
∑
|un|(1 + |n|2)

s
2 |vn|(1 + |n|2)

s
2

≤ (
∑
|un|2(1 + |n|2)s)

1
2 (
∑
|vn|2(1 + |n|2)s)

1
2 (by Cauchy − Schwartz)

= ‖u‖s‖v‖s
< ∞.

Ex. 24. Show that C∞(T) ⊂ Hs. Prove that Hs is a complete metric space. In fact Hs is
the completion of (C∞(T), ‖ ‖s).
Ex. 25. Show that Ht ⊂ Hs for s ≤ t.

Can we give some concrete representation for Hs? We can identify H0(T) with L2(T).
For s ≥ 0, Hs ⊆ H0 = L2. Also, if s > 0, then Hs ⊂ H0.

Ex. 26.
∑

n∈Z
1
ne

inx is in H0(S1) but is not in any Hs for s > 0.

Lemma 27. H−s is the isometric dual of Hs for all s ∈ Z.

Proof. If u ∈ H−s and v ∈ Hs, define a functional Hs → C by v → 〈v, u〉 =
∑
vnun. 〈v, u〉 is

defined since

|
∑

vnun| ≤
∑
|vn||un|(1 + |n|2)

s
2 (1 + |n|2)−

s
2

≤ (
∑
|vn|2(1 + |n|2)s)

1
2 (
∑
|un|2(1 + |n|2)−s)

1
2

= ‖v‖s‖u‖−s
< ∞.

The rest of the proof is left as an exercise.

Definition 28. Recall that when s ≥ 0, Hs ⊆ H0 = L2. For f ∈ Hs, f =
∑
fne

inx, we define
Dαf formally by Dαf =

∑
fn(in)αeinx, where α = (α1, . . . , αr), αi non-negative. Then f

has ”L2-derivatives” of order less than or equal to s, i.e., for |α| ≤ s, Dαf defines an element
of L2. For, ∑

|(in)α|2|fn|2 =
∑
|n1|2α1 . . . |nr|2αr |fn|2

≤
∑

(n1
2 + . . .+ nr

2)|α||fn|2

�
∑

(1 + |n|2)
|α||fn|2

< ∞ if |α| ≤ s.

Now since the formal derivative Dαf ∈ L2, it is in L1
loc and hence one would expect that it

is the αth derivative of f in the weak sense also. Indeed, this is true. All we have to prove is
that ∫

Dαfφ dx = (−1)|α|
∫
fDαφdx for all φ ∈ C∞(T).

That is, we have to prove that∫
fn(in)αeinxφdx = (−1)|α|

∫
fDαφdx

(from the continuity of the L2 inner product). But this follows by integration by parts.
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Lemma 29. Dα : Hs → Hs−|α| is continuous.

Proof. Let u =
∑
une

inx, Dαu =
∑
un(in)αeinx. Let us compute

‖Dαu‖2t =
∑
|un|2|n|2α(1 + |n|2)t

�
∑
|un|2(1 + |n|2)|α|+t

If |α| + t ≤ s, i.e., t ≤ s − |α|, then this series converges. Hence Dα maps Hs continuously
into Hs−|α|.

Remark 30. If u =
∑
une

inx ∈ Hs we can define ∆u formally, where ∆ is the Laplacian.
Then

(1−∆)tu =
∑
n

(1 + |n|2)teinx

Now, which space does (1 −∆)tu lie in? Let (1 −∆)tu ∈ Hk. u ∈ Hs. So (1 −∆)tu ∈ Hk,
i.e.,

∑
|un|2(1 + |n|2)2t+k < ∞ if 2t + k ≤ s. So (1 − ∆)s maps Hs into H−s. This map is

invertible and the inverse is given by (1−∆)−s.

Lemma 31. The operator (1−∆)s : Hs → H−s is an isometry.

Proof. Let u =
∑
une

inx ∈ Hs. Then

‖(1−∆)su‖2−s =
∑
|un|2(1 + |n|2)2s(1 + |n|2)−s

=
∑
|un|2(1 + |n|2)s

= ‖u‖2s.

Ex. 32. Show that for u, v ∈ Hs, we have

〈u, v〉s = 〈(1−∆)su, v〉0 = 〈u, (1−∆)sv〉0.

Remark 33. ∆s : Hs → H−s cannot be invertible since it has got non-trivial kernel. In fact
∆su = 0 for any constant u.

If s ≥ 0, we have seen that Hs ⊂ L2 and if t ≤ s then Hs ⊆ Ht. Now we may ask the
following question: For what value of s > 0 is it true that Hs ⊂ C(T)? Let

∑
une

inx ∈ Hs.
Now

∑
une

inx ∈ C(T) if the series
∑
une

inx converges uniformly. This is true if
∑
|un|

converges. Now ∑
|un| =

∑
|un|(1 + |n|2)

s
2 (1 + |n|2)

−s
2

≤ (
∑
|un|2(1 + |n|2)s)

1
2 (
∑ 1

(1 + |n|2)s
)
1
2

= ‖u‖s(
∑ 1

(1 + |n|2)s
)
1
2
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∑ 1
(1+|n|2)s

�
∑ 1
|n|2s converges if 2s > r, i.e., if s > r

2 . Thus
∑
|un| converges if s > r

2 . So

an element
∑
une

inx of Hs is in C(T) if s > r
2 where r is the dimension of T .

Now let us see when u ∈ Hs is in C1(T). Let u =
∑
une

inx ∈ Hs. Formally differentiating
once with respect to, say, x1, we get

D1u =
∑

un(in1)einx. (7)

Let us see when the above series is uniformly convergent. It is so if the series
∑
|un||n1| is

convergent. Now,∑
|un||n1| ≤

∑
|un|(1 + |n|2)

1
2

=
∑
|un|(1 + |n|2)

s
2 (1 + |n|2)−( s

2
− 1

2
)

≤ (
∑
|un|2(1 + |n|2)s)

1
2 (
∑ 1

(1 + |n|2)s−1
)
1
2

= ‖u‖s(
∑ 1

(1 + |n|2)s−1
)
1
2

� ‖u‖s(
∑ 1

|n|2s−2 )
1
2

< ∞ if 2s− 2 > r, i.e., if s >
r

2
+ 1.

Thus if s > r
2 + 1 then the series Eq. 7 is uniformly convergent and hence the series

∑
une

inx

which is got by integrating Eq. 7 is in C1. Iterating the above process we get

Lemma 34 (Sobolev Lemma). If s > r
2 + k, then Hs ⊆ Ck(T).

Corollary 35.
⋂
s∈ZHs = C∞(T).

It is very useful to have an equivalent norm on Hs:

Definition 36. Let u ∈ Hs where s > r
2 + k. Then by the Sobolev lemma u ∈ Ck(T). We

define a new norm | |k on Hs by

|u|k =
∑
|α|≤k

‖Dαu(x)‖L2 .

Lemma 37. If u ∈ Hs, s > r/2 + k, then ‖u‖k � |u|k.

Proof. We observe that

‖Dαu‖20 =
∑
|n|2α|un|2 ≤

∑
|un|2(1 + |n|2)k.

To get the other way we note that both (1 + |x|2)
k
2 and

∑
α≤k |xα| are nonzero for nonzero x

and grow like |x|k at infinity so that we have

(1 + |x|2)
k
2 ≤ C

∑
α≤k
|xα|,

for some C > 0.
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6 Distributions on T

Definition 38. A distribution on T is a functional u : C∞(T) → C such that there exists
k ∈ Z+ ∪ {0}, C ∈ R+ such that

|u(φ)| ≤ C
∑
|α|≤k

sup
x∈T
|Dαφ(x)|

We denote the space of distributions on T by D′(T).

Proposition 39.

D′(T) =
⋃
s∈Z

Hs.

Proof. Let u ∈ D′(T). Then there exists k ∈ Z+ ∪ {0}, c ∈ R+ such that

|u(φ)| ≤ C
∑
|α|≤k

sup
x∈T
|Dαφ(x)|, φ ∈ C∞(T)

≤ C
∑
|α|≤k

∑
n

|φn||n||α|

≤ C ′
∑
n

|φn||n|k

= C ′
∑
n

|φn||n|k+[ r
2

] 1
2

+ 1
2 · |n|−[ r

2
] 1
2
− 1

2

≤ C ′(
∑
n

|φn|2|n|2k+[ r
2

]+1)
1
2 (
∑
|n|6=0

1

|n|[
r
2

]+1
)
1
2

≤ C ′′(
∑
n

|φn|2(1 + |n|2)k+[ r
2

]+1)
1
2

= C ′′‖φ‖s where s = k +
r

2
+ 1.

This shows that u : C∞ ↪→ Hs → C is continuous. But C∞(T) is dense in Hs. So we can
extend u to a continuous functional on Hs. So we can consider u as an element of H−s. Thus
we have proved that D′(T) ⊆ ∪s∈ZHs.

Conversely, let u ∈ Hs for some s. If s ≥ 0 then u ∈ H0 ⊂ L2(T), hence locally L1

and hence defines a distribution. So let us consider the case where u ∈ H−s, s > 0, i.e.,
u ∈ H∗s , s > 0. Let φ ∈ C∞(T) ⊆ Hs, where φ =

∑
φne

inx. Also, let u =
∑
une

inx.

|u(φ)| = |
∑

φnun|

≤ (
∑
|un|(1 + |n|2)

−s
2 · |φn|(1 + |n|2)

s
2 )

≤ (
∑
|un|2(1 + |n|2)−s)

1
2 (
∑
|φn|2(1 + |n|2)s)

1
2

= ‖u‖−s‖φ‖s
� ‖u‖−s(

∑
|α|≤s

‖Dαφ‖L2)

≤ ‖u‖−s · c ·
∑
|α|≤s

sup |Dαφ|.
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Thus u is a distribution.

Remark 40. For distributions we have already defined distributional derivatives. Also, for
u ∈ L1

loc, we defined weak derivatives and for u ∈ Hs we defined formal derivative. Now if
u ∈ Ck(T) we have the usual derivative. We also showed that these definitions coincide.

Now we have identified D′(T) with ∪s∈ZHs. We have to show that under this identification
both definitions of derivatives, viz., formal and distributional, coincide.

Suppose u ∈ Ht, where u =
∑
une

inx and let φ ∈ C∞(T) and φ =
∑
φne

inx. We have the
formal derivative of u given by Dα

F (u) =
∑
un(in)αeinx and also the distributional derivative

of u given by (Dα
d u, φ) = (u, (−1)|α|Dα(φ)). Now,

(Dα
F (u), φ) =

∑
un(in)αφn

= (−1)|α|
∑

un(in)αφn

while

(Dα
d u, φ) = (−1)|α|(u,Dαφ)

= (−1)|α|
∑

un(in)αφn

and hence Dα
Fu = Dα

d u.

Theorem 41. Let L be a linear partial differential operator L =
∑
aαD

α, where α ∈ C∞(T).
Then L : Hs → Hs−k is continuous.

Proof. As we have earlier proved that Dα : Hs → Hs−|α| (α > 0) is continuous, the result
follows from the next lemma.

Lemma 42. Let φ ∈ C∞(T). Let Φ(u) := φu for u ∈ Hs. Then there exists C > 0 such that
‖Φ(u)‖s ≤ C ‖u‖s for u ∈ C∞(T).

Proof. One may perhaps multiply the Fourier series of φ and u and then try to estimate
‖φu‖s. But this is an extremely tedious process. So instead we make use of the fact that for
u ∈ Hk, k ≥ 0,

‖u‖k �
∑
|α|≤k

‖Dαu‖0.

So we have to prove that for s ≥ 0,∑
|α|≤s

‖Dα(φu)‖0 ≤ c(φ)
∑
|α|≤s

‖Dαu‖0.

Fix an α with |α| = s. Since s ≥ 0 and φ, u ∈ C∞, we can differentiate using Leibniz rule
and so

‖Dα(φu)‖0 ≤ ‖φDαu‖0 +
∑
|γ|<s

∥∥∥DbφDγu
∥∥∥

≤ ‖φ‖∞‖D
αu‖0 +

∑
|γ|<s

ci‖Dγu‖0

11



Similarly, we do for each γ such that |γ| < s and get∑
|α|<s

‖Dα(φu)‖0 ≤ c(φ)
∑
|α|≤s

ci‖Dαu‖0

Thus s ≥ 0, φ : C∞(T) ⊆ Hs → Hs is continuous and so we can extend φ to a continuous
operator φ̃ : Hs → Hs.

Now let us consider the case when s is negative. We want to prove that φ : C∞(T) ⊆
H−s → H−s (s > 0) is continuous, i.e., we want to prove that ‖φu‖−s ≤ c(φ)‖u‖−s∀u ∈
C∞(T) ⊆ H−s. Now, H−s is the isometric dual of Hs. So it is enough to prove that |(φu,w)| ≤
c(φ)‖u‖−s‖w‖s ∀w ∈ Hs. Since C∞(T) is dense in Hs we need to prove it for w ∈ C∞(T)
only. Now,

|(φu,w)| = |
∑

(φu)nwn|

= |
∫
wφu|

= |
∫

(wφ)u|

= |
∑

(wφ)n(1 + |n|2)
s
2 (un(1 + |n|2))

s
2 |

≤ ‖u‖−s
∥∥φw∥∥

s

= ‖u‖s
∥∥φw∥∥

s

≤ ‖u‖sc(φ)‖w‖s (by case 1, since s > 0).

Thus φ : C∞(T) ↪→ H−s → H−s is continuous. But C∞(T) is dense in H−s. So we can extend
φ to a continuous operator on H−s.

7 Elliptic Operators

Let L =
∑
aαD

α, where aα ∈ C∞(T) and the order of L is k. We have seen that L takes
Hs into Hs−k and L : Hs → Hs−k is continuous. Now one may naturally ask the following
question: Let u ∈ Ht for some t and Lu = f , where f ∈ Hs. Then does this imply that
u ∈ Hs+k?

The answer is in the affirmative if one is able to show that ‖u‖s+k � ‖Lu‖s. But this is
not possible. For example, this is not true for constant functions. So let us modify this and
ask whether

‖u‖s+k ≤ C(‖Lu‖s + ‖u‖t) (8)

can be true, where C is some constant depending on s, k and t. We shall see that under
certain conditions on L, Eq. 8 holds. Then Eq. 8 is called Garding’s inequality.

Now let us see what should be the condition imposed on L such that Eq. 8 holds. Let us
consider the case of a homogeneous differential operator with constant coefficients, i.e.,L =∑
|α|=k aαD

α, where aα ∈ C.
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Definition 43 (Symbol of L). The symbol σ(L) of L is defined as

σ(L) =
∑
|α|=k

aαn
α.

We then have
Lu =

∑
unσ(L)(n)(i)|α|einx.

Lu ∈ Hs implies that

‖Lu‖2s =
∑
|un|2|σ(L)(n)|2(1 + |n|2)s <∞.

Now if |σ(L)(n)|2 � (1+|n|2)k, then we see that ‖u‖s+k ≤ c‖Lu‖s, where c = c(s, k). But this
may not be possible. First, we note that if n ∈ Zr is such that σ(L)(n) = 0 then σ(L)(l ·n) = 0
for all l ∈ Z. Hence |σ(L)(n)|2 � (1 + |n|2)k for n� 0 only if σ(L)(n) 6= 0 for any non-zero
n ∈ Zr. Thus we are led to require that σ(L)(ξ) 6= 0 for ξ ∈ Rr \ {0}. This condition is also
sufficient in the sense that if σ(L)(ξ) 6= 0 for ξ 6= 0 then |σ(L)(ξ)|2 � (1 + |ξ|2)k since we can
find constants c1 and c2 such that

c1|σ(L)(ξ)|2 ≤ (1 + |ξ|2)k ≤ c2|σ(L)(ξ)|2.

Note however that σ(L)(0) = 0, since L is homogeneous. Hence if un = 0 for all n 6= 0, then
Lu = 0 and we can never get ‖u‖s+k ≤ c‖Lu‖s. So we need an error term to take care of
this situation. What we have done above shows that if σ(L)(ξ) 6= 0 for ξ ∈ Rn \ {0} then
there exists a constant c such that

‖u‖s+k ≤ c(‖Lu‖s + ‖u‖t)

Now we make the definition of ellipticity.

Definition 44. Let L be a homogeneous differential operator of order k with constant coef-
ficients. L is said to be elliptic if σ(L)(ξ) 6= 0 for ξ ∈ Rn \ {0}.

More generally, let L =
∑
|α|≤k aαD

α; aα ∈ C∞(T). For x ∈ T, we define the symbol
σ(L)(x, ·) by σ(L)(x, ξ) =

∑
|α|=k aα(x)ξα. (σ(L)(x, .) : Rn → Rn).

We define L to be elliptic at a point x if σ(L)(x, ξ) 6= 0 for ξ ∈ Rn \ {0}. L is said to be
elliptic if it is elliptic at each point x ∈ T.

Thus if L is an elliptic homogeneous partial differential operator of order k, then ‖u‖s+k ≤
c((‖Lu‖s + ‖u‖t).

The basic inequality concerning the linear elliptic partial diferential operators is

Theorem 45 (Garding’s Inequality). Let L be elliptic of order k ≥ 1. Let u ∈ Ht for some
t and Lu ∈ Hs. Then we have

‖u‖s+k ≤ c(‖Lu‖s + ‖u‖t),

where c is a constant depending only on s, k and t.

Remark 46. If t ≥ s+ k then the inequality is trivially true. We postpone the proof of this
inequality. Assuming this we derive the consequences.

13



8 Regularity on the Torus

Lemma 47. [Rellich’s Lemma] Let s < t. The natural inclusion Ht ↪→ Hs is compact.
That is, the image of the closed unit ball in Ht is totally bounded in Hs.

Proof. Let u :=
∑
une

inx be in the unit ball of Ht. Write u =
∑
|n|≤N une

inx+
∑
|n|>N une

inx

for an N to be chosen later. We compute the norm of the second term in Hs:∑
|n|>N

|un|2(1 + |n|2)s ≤
∑
|n|>N

|un|2(1 + |n|2)t(1 + |n|2)s−t

≤
∑
|n|>N

|un|2(1 + |n|2)t(1 + |N |2)s−t

< ε,

if N is chosen sufficiently large.

The first term lies in a finite dimensional space of v’s such that if vn 6= 0 then |n| ≤ N .
Since any finite dimensional normed linear space is locally compact, we can find an ε-net for
such a set. Thus the full unit ball in Ht is totally bounded in Hs.

In the course of the proof we have proved the following

Corollary 48. Let t < s. Given ε > 0, there exists N0 � 0 such that if u ∈ Hs with un = 0
for all |n| ≤ N0, then ‖u‖t ≤ ε‖u‖s.

Proposition 49 (Fredohlm Property). Let L be an elliptic operator of order k with C∞
coefficients so that L : Hk ⊆ H0 → H0. Then kerL and coker L are finite dimensional.

Proof. We use the corollary to prove that kerL is finite dimensional. For that, for n ∈ N,
define Hs(N) = {u ∈ Hs | un = 0 for |n| ≤ N}. We have L : Hs(N)→ Hs−k, with L elliptic
operator of order k. By Garding’s inequality,

‖u‖s ≤ c(‖Lu‖s−k + ‖u‖t) for u ∈ Ht.

Now let u ∈ Hs(N). We can also consider u ∈ Ht for any t < s. So fix some t < s. Given
ε > 0, we can choose N � 0 such that for u ∈ Hs(N), ‖u‖t ≤ ε‖u‖s (by the above corollary).
Therefore

‖u‖s ≤ c‖Lu‖s−k + cε‖u‖s.

Now choose ε such that cε ≤ 1
2 and choose N accordingly. Hence ‖u‖s ≤ c‖Lu‖s−k. This

means that L is a topological isomorphism of Hs(N) → LHs(N) ⊆ Hs−k. Now if Y , Z, M
are linear spaces and T : Y ⊕ Z → M is a homomorphism such that T |Y is one-one, then
dim kerT ≤ dimZ. Therefore dim kerL ≤ dimHs(N)⊥ is finite.

Alternate Proof. Let L : Hk → H0. Suppose kerL is not finite dimensional. Then
there exists a countable collection of linearly independent vectors {ul} in Hk ⊆ H0 such that
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L(ul) = 0 for all l. We can find an orthonormal family {el}l∈N in H0 and L(el) = 0 for all
l ∈ N. By Garding’s inequality,∥∥∥el∥∥∥

k
≤ c(

∥∥∥Lel∥∥∥
0

+
∥∥∥el∥∥∥

0
) = c

That is, {
∥∥el∥∥

k
}l∈N is bounded. Since Hk ↪→ H0 is a compact operator, this means that

{el}l∈N has a convergent subsequence in H0. But this is absurd since
∥∥el − em∥∥

0
=
√

2 for
l 6= m. Thus kerL is finite dimensional.

coker L is isomorphic to kerL∗. Now if L is elliptic then we can show that L∗ is elliptic.
Therefore kerL∗ is finite dimensional and hence coker L is finite dimensional.

We now use these results to prove the regularity of solutions of elliptic partial differential
operators on T. We shall indicate two proofs of this result.

Theorem 50 (Regularity on T). Let L be an elliptic partail differential operator on T of
order k. Let f ∈ Hs(T). Let u ∈ Ht for some t be such that Lu = f . Then u ∈ Hs+k.

Proof. We may assume that t < s + k. Let Hs(N) denote the space of v ∈ Hs such that
vn = 0 for |n| > N . For N � 0 we have

‖ϕ‖−s � ‖L
∗ϕ‖−s−k , ϕ ∈ Hs(N).

We now compute

〈u, L∗ϕ〉 = 〈f, ϕ〉
≤ ‖f ‖s ‖ϕ‖−s
� ‖f ‖s ‖L

∗ϕ‖−s−k .

Thus u defines a bounded linear map on L∗C∞(T) ⊂ H−s−k. The closure of L∗C∞(T)
in H−s−k is of finite codimension. Thus the space generated by it and a finite number of
elements of H−s−k is dense in H−s−k. Thus u ∈ H∗−s−k, the dual of H−s−k. That is to say
u ∈ Hs+k.

Proof 2. Write u =
∑
une

inx. Let fN =
∑
|n|≤N fne

inx for N ∈ N. Note that PuN = fN .
(Verify this.) Using Garding’s inequality for the C∞ function uN − uM , we get

‖uN − uM ‖s+d ≤ C(‖fN − fM ‖s + ‖un − uM ‖t).

As uN → u in Ht and fn → f in Hs, we deduce that (uN ) is Cauchy in Hs+d. Since Hs+d

is complete, uN → ũ in Hs+d. We already have uN → u in Hs+d. Hence, by uniqueness of
limits, we conclude that ũ = u. In particular, u ∈ Hs+d.

9 Garding’s Inequality

We now prove Garding’s inequality for the general case.
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Theorem 51. Let L be an elliptic operator of order k, L =
∑
|α|≤k aαD

α, aα ∈ C∞(T). If
u ∈ Ht and Lu ∈ Hs, then there exists a constant c which depend only on L, s and t such
that ‖u‖s+k ≤ c(‖Lu‖s + ‖u‖t).

Proof. Case 1: L =
∑
|α|=k aαD

α, aα ∈ C.

We have already proved this case.

Case 2: Step 1. Let L =
∑
|α|=k aαD

α, where aα ∈ C∞(T). Let x0 ∈ T and L0 =∑
|α|=k aα(x0)Dα. By Case 1, for any u ∈ Ht such that Lu ∈ Hs, we have

‖u‖s+k ≤ c(‖L0u‖s + ‖u‖t) (9)

Now recall that if P =
∑
|k|≤l bαD

α, then P : Hs+l → Hs, P is continuous and ‖Pu‖s ≤
c1(bα | |α| = k)‖u‖s+l + c2(bb | |b| ≤ k − 1)‖u‖s+l−1 for any u ∈ Hs+l, where the constants
c1 and c2 can be made small if sup |bα|’s are sufficiently small. Therefore Eq. 9 becomes

‖u‖s+k ≤ c(‖L0u‖s + ‖u‖t)
≤ c(‖(L0 − L)u‖s + ‖Lu‖s + ‖u‖t)
≤ c(c1‖u‖s+k + c2‖u‖s+k−1 + ‖Lu‖s + ‖u‖t)

If sup |aα(x)− aα(x0)| < ε, where ε is chosen small enough so that cc1 ≤ 1
2 then ‖u‖s+k ≤

c(c′‖u‖s+k−1 + ‖Lu‖s + ‖u‖t).

Case 2’: Proceeding exactly as in Case 2 we get ‖u‖s+k ≤ c(c′‖u‖s+k−1+‖Lu‖s+‖u‖t).

Step 2 Since aα’s are uniformly continuous on T, given ε > 0, there exists δ = δ(L), such
that the coefficients of L oscillates within ε on any ball of radius δ. So take a δ corresponding
to the ε given in Case 2 and cover T with δ balls. Since T is compact we can extract a
subcover. Choose a partition of unity {φi}Ni=1 subordinate to the above covering. Let u ∈ Ht

for some t. Then u =
∑
φiu since

∑
φi = 1. Therefore ‖u‖s+k ≤

∑
‖φiu‖s+k. Since suppφi

is contained in a δ-ball and sup |aα(x)− aα(x′)| < ε for x, x′ in a δ-ball from Step 1 we get
that

‖φiu‖s+k ≤ (c′i‖φiu‖s+k−1 + ‖Lφiu‖s + ‖φiu‖t).

Now
‖L(φiu)‖s ≤ ‖φiL(u)‖s + c(φi)‖u‖s+k−1.

Therefore
‖u‖s+k ≤ C(c′‖u‖s+k−1 + ‖Lu‖s + ‖u‖t). (10)

Now Garding’s inequality is trivial for t ≥ s + k. So we assume that t ≤ s + k − 1. Then
‖u‖t ≤ ‖u‖s+k−1 ≤ ‖u‖s+k. Now suppose that given any ε > 0 we can find a c(ε) such that

‖u‖s+k−1 ≤ ε‖u‖s+k + C(ε)‖u‖t (11)

Then if we choose ε such that Cc′ε ≤ 1
2 , we get Garding’s inequality from Eq. 11. So let

us prove Eq. 11.

We want to show that for r ≤ s ≤ t, ‖u‖2s ≤ ε‖u‖
2
t + C(ε)‖u‖2r . That is to prove that∑

|un|2(1 + |n|2)t ≤
∑
|un|2(ε(1 + |n|2)t + C(ε)(1 + |n|2)r)
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which is true if
(1 + |n|2)s ≤ ε(1 + |n|2)t + C(ε)(1 + |n|2)r for all n.

That is, if
1 ≤ ε(1 + |n|2)t−s + C(ε)(1 + |n|2)r−s.

Now for x > 0, we have the identity

xs ≤ xt + xr or 1 ≤ xt−s + xr−s.

Putting x = αx, we have 1 ≤ αt−sxt−s + αr−sxr−s. Choose α such that αt−s = ε. Hence

αr−s = ε
r−s
t−s = C(ε) (say), so that 1 ≤ εxt−s + C(ε)xr−s. Putting x = 1 + |n|2 we get

1 ≤ ε(1 + |n|2)t−s + C(ε)(1 + |n|2)r−s.

10 Regularity Theorem in the General Case

Theorem 52. Let Ω be an open set in Rn and L an elliptic linear partial differential operator
of order k. Let u ∈ D′(Ω) and Lu = f where f ∈ C∞(Ω). Then u ∈ C∞(Ω).

Proof. Let L =
∑
|α|≤k aαD

α, aα ∈ C∞(Ω). To prove that given x0 ∈ Ω, u is C∞ around x0.

Choose neighbourhoods V ⊂ V ⊂ U ⊂ Q of x0 such that Q is one of the fundamental cubes.
In fact we choose r small enough so that B(x0, 2r) ⊂ Q and put V = B(x0, r), U = B(x0, 2r).
Let g ∈ C∞(Ω) be such that g takes values in [0, 1], g = 1 inside B(x0, r) and g = 0 outside
B(x0, 2r). Let L0 =

∑
|α|≤k aα(x0)Dα. Let l̃ = gL + (1 − g)L0. Then l̃ ≡ L inside B(x0, r)

and l̃ ≡ L0 outside B(x0, 2r). Since the coefficients of l̃ are constant on the boundary of
Q, l̃ defines a differential operator A on the torus T. Also we can show that if the support
of g is sufficiently small, then l̃ is elliptic and hence A is elliptic. Choose a C∞ function
g1 : Ω→ [0, 1] such that

g1 =

{
1 inside B(x0,

r
2)

0 outside B(x0,
3r
4 ).

Now we observe that inside B(x0,
r
2), g1u as a distribution on T is the same as u as

a distribution on Ω. That is, if h ∈ C∞c (Ω), with support of h a subset of B(x0,
r
2) and

h̃ ∈ C∞(T) is got by extending h periodically outside Q, then (g1u, h̃) = (g1u, h). Now for
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all φ ∈ C∞(T),

(A(g1u), φ) = (g1u,A
∗φ)

= (g1u,A
∗(gφ)) + (g1u,A

∗(1− g)φ)

= (g1u,A
∗(gφ))

= (g1u, L
∗(gφ))

= (u, L∗(g1gφ)) + (u, P ∗φ)

= (u, L∗(g1φ)) + (u, P ∗φ)

= (Lu, g1φ) + (u, P ∗φ)

= (f, g1φ) + (Pu, φ)

= (fg1, φ) + (Pu, φ)

= (g1f + Pu, φ).

In the above, P ∗ is a differential operator on Ω of order less than or equal to k − 1 with
coefficients having support inside the support of g.

This is true for all φ ∈ C∞(T). Therefore

A(g1u) = g1f + Pu. (12)

Now let u ∈ Ht. Then Pu ∈ Ht−k+1. Therefore Eq. 12 gives A(gu) ∈ Ht−k+1. Hence
the elliptic regularity for the torus gives g1u ∈ Ht−k+1+k = Ht+1. But g1u = u inside
B(x0,

r
2) ⊂ T. Therefore u ∈ Ht+1 inside B(x0,

r
2). Repeating the above process we see that

u ∈ Ht for all t, inside B(x0,
r
2). Therefore u and hence g1u is C∞ inside B(x0,

r
2) ⊆ T.

Therefore u as a distribution on Ω is C∞ inside B(x0,
r
2). That is, for all φ ∈ C∞c (Ω) with

support φ ⊆ B(x0,
r
2), u(φ) =

∫
gφ where g ∈ C∞c (Ω). Now we use a partition of unity

argument to show that u is globally given by a C∞ function. Cover Ω by balls of radius
r
2 and choose a partition of unity subordinate to the above covering. Let φ be a C∞ with
support inside a compact set K. Then there exists an open set W ⊇ K and ψ1, . . . ψm such
that

∑
ψ1(x) = 1 for all x ∈W . Therefore φ =

∑m
i=1 φψi and

u(φ) =

m∑
i=1

u(φψi) (13)

Now corresponding to each α ∈ Λ choose a gα ∈ C∞(Ω) such that for η ∈ C∞c (Ω) with support
of η ⊂ support ψα, u(η) =

∫
gαη. Then Eq. 13 shows that u is given by u(φ) =

∫
φf , where

f =
∑

α∈Λ gαψα ∈ C∞(Ω) ∩ L1
loc. That is, u ∈ C∞(Ω).
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