Two Interesting Examples in Topology

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 First Example

This is a write-up of an interesting example constructed in MTTS 2012. I have not checked the details and some of the claims may be wrong! Please go through the article and let me know. If you find a better way of doing this, send me your comments.

Let $X = \mathbb{R}$. Let \mathcal{T}_d denote the standard topology on \mathbb{R} . Let \mathcal{S} be the collection of all subsets of the form $G := U \setminus A$ where $U \in \mathcal{T}_d$ and A is a countable subset of \mathbb{R} . Let \mathcal{T} be the smallest topology containing \mathcal{S} . It is easy to see that $\mathcal{T} = \mathcal{S}$. We shall always denote elements of \mathcal{T} as $G = U \setminus A$ etc.

The space (X, \mathcal{T}) is Hausdorff, as $\mathcal{T}_d \subset \mathcal{T}$. It is not first countable. For, if $\{G_n : n \in \mathbb{N}\}$ is a local basis at some point $x \in X$, then $G_n = U_n \setminus A_n$. Choose $x_n \in G_n, x_n \neq x$. The set $V := G_k \setminus \{x_n : n \in \mathbb{N}\}$ is an open set containing x. No G_n can be a subset of V.

Another way of seeing this is as follows. Let $b \notin \bigcup_n A_n$. Then $\mathbb{R} - \{b\}$ is an open set containing x. No G_n is contained in this set. Or, let $A := \bigcup_n A_n$. Let $U \ni x$ be any set in \mathcal{T}_d . Then $U \setminus A$ is an open set containing x. It does not contain any G_n .

Let (x_n) be a sequence in X converging to x in \mathcal{T} . Let $G_n := (x - 1/n, x + 1/n) \setminus \{x_n : x_n \neq x, n \in \mathbb{N}\}$. Then G_n does not contain any element of the sequence other than x. This shows that any convergent sequence in (X, \mathcal{T}) is eventually constant.

Let x be a cluster point of $E \subset X$. Since \mathcal{T} is Hausdorff, there exists a sequence of distinct elements of E converging to x. This is impossible, hence E has no cluster point.

This shows why the concept of cluster point is not the appropriate concept/definition to deal with the closures of subsets and why it is better to work with limit-points, as I define. The importance of the notion of cluster point lies therefore in the Bolzano-Weierstrass property used in compactness, I guess.

An immediate fall-out of this is that any limit point of a countable set lies in it and hence no countable set can be dense. Hence the space (X, \mathcal{T}) cannot be separable.

Let K be a compact subset of (X, \mathcal{T}) . If K is infinite, let $A := \{x_n : n \in \mathbb{N}\}$ be a countably infinite subset of K. Then $\{\mathbb{R} \setminus \{x_n\} : n \in \mathbb{N}\}$ is an open cover of K which has no finite

subcover. Hence an infinite set cannot be compact. We conclude that any compact subset of (X, \mathcal{T}) is finite.

This immediately leads us to suspect that (X, \mathcal{T}) is not path-connected. The image $[\gamma]$ of a path $\gamma \colon [0, 1] \to (X, \mathcal{T})$ is a compact connected subset of (X, \mathcal{T}) . Hence $[\gamma]$ is a finite set. Can this be connected unless it is a singleton?

Let $E = \{x_1, \ldots, x_n\}$ be a finite set with $n \ge 2$. Let $f: E \to \{\pm 1\}$ be the function defined as $f(x_j) = 1$ for $1 \le j < n$ and $f(x_n) = -1$. Then f is continuous. For, the sets $G_1 := \mathbb{R} \setminus \{x_n\}$ and $G_n := \mathbb{R} \setminus \{x_j : 1 \le j \le n - 1\}$ will attend to the continuity of f. Thus we conclude that $[\gamma]$ is a singleton. Hence the space is not path-connected.

Is it connected? I guess so. It seems that if $G = U \setminus A$, then x is a limit point of G iff it is a limit point of U. Hence if G is both open and closed, then so is U.

Any open cover of X admits a countable subcover. For, if $\{G_i\}$ is an open cover, then $\{U_i\}$ is an open cover of $(\mathbb{R}, \mathcal{T}_d)$ and hence it admits a countable subcover, say $\{U_n\}$. Then $\{G_n\}$ is an open cover of X but for a countable subset. Hence we can include a countable number of elements from $\{G_i\}$ to cover this countable subset.

Are there any other interesting observations about this space?

2 Cluster Point Versus Limit Point

We say that a subset $F \subset \mathbb{N}$ is *small* if $\sum_{k \in F} \frac{1}{k}$ is convergent. The empty set is defined to be small. The following are easy to see.

- 1. Any finite subset $F \subset \mathbb{N}$ is small.
- 2. If S is small and $T \subset S$, then T is small.
- 3. If F_k is small for $1 \le k \le N$, then $F := \bigcup_{k=1}^N F_k$ is small.
- 4. If S is an infinite subset of N, there exists $T \subset S$ such that T is an *infinite* small set. To see this, observe that for each $k \in \mathbb{N}$ there exists $n_k \in S$ such that $n_k > 2^k$.
- 5. \mathbb{N} is not small.

Let $X := \mathbb{N} \cup \{0\}$. We declare a subset $U \subset X$ open if (i) either $U \subset \mathbb{N}$ or (ii) if $0 \in U$, then $N \setminus U$ is small. It is easy to see that the collection of open sets defines a Hausdorff topology on X. While the subspace topology on \mathbb{N} is discrete, the topology on X is not.

We claim that any compact subset $K \subset X$ is finite. For, if K is infinite and is a subset of \mathbb{N} , then $\{\{x\} : x \in K\}$ is an infinite open cover of K which does not admit a finite subcover. If $0 \in K$ and K is infinite, we write $K = \{0\} \cup L, L \subset \mathbb{N}$. Note that L is an infinite set.

Case 1. L is infinite and small. Then $X \setminus L \cup \{\{l\} : l \in L\}$ is an open cover of K which has no finite subcover.

Case 2. L is infinite and not small. Then by Item 4, there exists an infinite subset, say $T \subset L$ which is small. Note that $L \setminus T$ is infinite. The collection $X \setminus T$ along with $\{\{x\} : x \in L \setminus T\}$ is an open cover of K which admits no finite subcover.

It follows therefore that any convergent sequence in X is eventually constant. The point 0 is a cluster point of the set \mathbb{N} . However there is no sequence in \mathbb{N} that converges to 0.

In the terminology of my book, "Topology of Metric Spaces", 0 is a cluster point of \mathbb{N} and also a limit point of N. However there is no sequence in \mathbb{N} that converges to 0. Note that this cannot happen in a metric space.

Remark 1. This example also brings out the inadequacy of sequences in questions of general topological spaces.