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We let C∗ denote the set of nonzero complex numbers.

Definition 1. Let z ∈ C∗. We define Arg (z) to be the set {t ∈ R : z = |z| exp(it)}. Any
t ∈ Arg (z) is called an argument of z.

The following result is well-known. It is proved using some of fundamental facts about
the exponential function, the trigonometric function cos and sin and their periodicity. Any
good book on complex analysis should have a proof of this. So, we omit the proof.

Proposition 2. Let z ∈ C be nonzero. Then there exists a unique θ ∈ [0, 2π) such that
z = |z| exp(iθ). Also, Arg (z) = {θ + n2π : n ∈ Z}.

The following lists some of the basic facts about the arguments of nonzero complex num-
bers.

Ex. 3. Let z, w ∈ C∗. Let θ ∈ Arg (z) and ϕ ∈ Arg (w). Then
(1) −θ ∈ Arg (z−1).
(2) θ + ϕ ∈ Arg (zw).
(3) θ − ϕ ∈ Arg (z/w).

Given an open set U ⊂ C, we say that there exists a continuous argument on U if there
exists a continuous function θ : U → C such that z = |z|eiθ(z) for all z ∈ U . The following
lemma says that there is no continuous argument on C∗.

Lemma 4. There exists no continuous argument on C∗.

Proof. Assuming such a θ exists, consider f : [0, 2π]→ R by setting

f(t) := [θ(eit) + θ(e−it)]/2π.

Then f is a real valued continuous function on [0, 2π]. Since 2πf(t) is a choice of Arg (eite−it)
and hence of Arg (1), it is integer valued continuous function on the interval [0, 2π]. By
intermediate value theorem, it is a constant. In particular, f(0) = f(π). This implies that
[θ(1) + θ(1)]/2π = [θ(−1) + θ(−1)]/2π. This implies that θ(1) = θ(−1), which is impossible.
For, θ(1) ∈ Arg (1), which is the set of even integral multiples of π while θ(−1) ∈ Arg (−1)
which is the set of odd integral multiples of π.
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However, if we are ready to ignore a closed half-line starting from 0, we can get a continuous
choice θ of Arg .

Let α ∈ R and let Lα := {teiα : t ≥ 0}. Note that a nonzero z ∈ C \ Lα iff α /∈ Arg (z).
For z /∈ Lα, there is a unique choice of Arg (z) in the interval (α, α + 2π). We denote this
choice by arg α : C \ Lα → (α, α+ 2π).

Theorem 5. arg α is continuous on C \ Lα.

Proof. Let θ := arg 0. Then C \ L0 = H0 ∪ H1 ∪ H2 where H0 := {x + iy : y > 0},
H1 := {x+ iy : x < 0} and H2 := {x+ iy : y < 0}. We show that θ is continuous on each of
the open half-planes Hi, 0 ≤ i ≤ 2.

If z ∈ H0, then Im (z) = |z| sin(θ(z)). So, sin(θ(z)) > 0. Since θ takes values only
in (0, 2π), this means that θ(z) ∈ (0, π) for such z. Now, cos : (0, π) → (−1, 1) is strictly
decreasing. Hence it has a continuous inverse cos−1 : (−1, 1)→ (0, π). Hence

θ(z) = cos−1(cos(θ(z))) = cos−1(Re (z)/|z|), z ∈ H0.

Since the RHS is continuous, it follows that θ is continuous on H0.

Similar reasoning leads us to the following expressions for θ restricted to H1 and H2:

θ(z) = π − sin−1
(

Im z

|z|

)
, z ∈ H1

θ(z) = 2π − cos−1
(

Re z

|z|

)
z ∈ H2.

The continuity of θ on H1 and H2 follows from these expressions as earlier. Thus the restric-
tions of θ to the open sets H0, H1, H2 are continuous. Since the union of these open sets is
C \ L0, an appeal to the gluing lemma establishes the continuity of θ.

General case: Consider the map f(z) := z exp(−iα) which maps C\Lα onto C\L0. Then
one shows that arg α(z) = α+ θ(f(z)).

If x ∈ R is positive, we know that there exists a unique y ∈ R such that x = exp(y). We
let y := log(x). Thus, we have a function log : R+ → R defined by exp(log(x)) = x for all
x ∈ R+. Since exp is a (continuous) increasing function, log is continuous (and increasing).

Definition 6. Given z ∈ C∗, any complex number w such that exp(w) = z is called a
logarithm of z. We let Log (z) stand for the set of all logarithms of a nonzero z ∈ C. This set
is nonempty.

Example 7. If z ∈ C∗, then w := log(|z|) + it where t ∈ Arg (z) is a logarithm of z.
Furthermore, any logarithm of z is of this form.

We say that there is a continuous logarithm on an open set U ⊂ C∗ if there is a continuous
function F : U → C such that z = exp(F (z)) for all z ∈ U .

Ex. 8. Let U ⊂ C∗ be open. Then there is a continuous argument on U iff there is a
continuous logarithm on U . Hence conclude that there is no continuous logarithm on C∗.
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We now characterize the open sets of U ⊂ C∗ which admit continuous logarithm using a
topological concept.

Theorem 9. The exponential map exp: C→ C maps the open strip

Sα,n := {z ∈ C : α+ 2πn < Im z < α+ 2π(n+ 1)}

homeomorphically onto C \ Lα for each α ∈ R.

Proof. The map exp: Sα,n → C \ Lα is a continuous bijection. Its inverse is given by F (z) =
log |z|+ 2nπ + arg α(z). Here log |z| stands for the real logarithm of the positive number |z|.
Hence the map z 7→ log |z|, being the composite of two continuous functions, is continuous.
Since arg α is continuous by the last theorem, the continuity of F follows.

Definition 10. Let f : X → Y be a continuous onto map. An open set V ⊂ Y is said to be
evenly covered by f if the inverse image f−1(V ) is a disjoint union ∪i∈IUi of open sets in X
each of which is mapped homeomorphically onto V by f .

We say that f is covering map if each y ∈ Y has an open neighbourhood which is evenly
covered by f .

Proposition 11. Let U ⊂ C∗ be such that U ∩ Lα = ∅ for some α ∈ R. Then U is evenly
covered by the exponential map.

Proof. For each integer n ∈ Z, we define

Vn := {z ∈ C : α+ 2πn < Im z < α+ 2π(n+ 1)} ∩ exp−1(U).

Then each Vn is open and exp−1(U) is the union of Vn. By the last theorem, the restriction
of the exponential map to the strip Sα,n sets up a bijection between the open subsets of the
strip with those of C \ Lα. In particular, the open set Vn is mapped homeomorphically onto
U for each n. Thus U is evenly covered by the exponential map.

Corollary 12. The open set C∗ is not evenly covered by the exponential map.

Proof. If C∗ is evenly covered by the exponential map, then its inverse image under exp is C.
Hence C is the disjoint union of open sets, each of which will be homeomorphic to C∗. This
contradicts the fact that C is connected.

Lemma 13. Let U ⊂ C∗ be open. Let F : U → C be a continuous logarithm on U . Then
F (U) is open in C.

Proof. This follows easily if we recall some well-known results from complex analysis. F ,
being the continuous inverse of the holomorphic function exp, is itself holomorphic. Also, F
cannot be a constant on any of the connected components of U . (Why?) Now we can appeal
to the open mapping theorem to derive the result. However, we indicate an elementary along
the lines developed so far.

Let Sα := {z ∈ C : α < Im z < α+ 2π} for some α ∈ R. Now,

F−1(Sα) = {z ∈ U : F (z) ∈ Sα} = exp(Sα ∩ F (U)).
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This shows that exp(Sα ∩ F (U)) is an open subset of U and hence of C. Clearly, exp(Sα ∩
F (U)) ⊂ C \Lα. Since exp is a homeomorphism of Sα onto C \Lα, it follows that Sα ∩F (U)
is open in C. If we observe that F (U) is the union of sets of the form Sα∩F (U), we conclude
that F (U) is open.

Theorem 14. An open set U ⊂ C∗ is evenly covered by the exponential map iff there is a
continuous logarithm on U .

Proof. Assume that U is evenly covered by exp. Let exp−1(U) = ∪iVi. Fix an i and let F be
the inverse of the homeomorphism exp: Vi → U . Then F is as required.

Conversely, let F as in the statement exist. Then by the last lemma, F (U) is open in C.
Call this open set V0. We let Vn := V0 + i2πn, the translate of V0 by i2πn. Then Vn’s are
open, they are pairwise disjoint and their union is exp−1(U). The restriction of exp to any
Vn maps Vn homeomorphically onto U . Hence U is evenly covered.

The inverse maps Fn : U → Vn are known as the branches of the logarithm on U .

The following gives a more sophisticated solution to Exercise 8.

Corollary 15. There exists no continuous logarithm on C∗.

Proof. If there exists a continuous logarithm on C∗, then C∗ is evenly covered by the expo-
nential map, by the last theorem. This contradicts Corollary 12.

We are now ready to construct the Riemann surface for the logarithm function. First of
all, a definition.

Definition 16. A topological space X is said to be a Riemann surface if there exists an open
cover {Ui : i ∈ I} of X, open subset Vi ⊂ C for each i ∈ I and a homoemorphism ϕi : Vi → Ui
with the following property: whenever Ui ∩ Uj 6= ∅, the map ϕ−1j ◦ ϕi : ϕ

−1
i (Ui ∩ Uj) →

ϕ−1j (Ui ∩ Uj) is holomorphic. (Note that the domain and codomain are open subsets of C,
since ϕi’s are homeomorphism.) The maps ϕi are called the parametrizing maps. We say
that Ui is parametrized by ϕi. The maps ϕ−1j ◦ ϕi are called the transition maps.

Example 17. Any open subset U ⊂ C is a Riemann surface.

Example 18. A most important example, which is encountered, albeit in disguise, in any first
course in complex analysis is the extended complex plane C∞ := C ∪ {∞}. The topology on
C∞ is clear once we recognize it as the one point compactification of C. We take U0 = C and
U∞ = C∞ \ {0}. The parametrizing maps ϕ0 : C→ U0 is the identity map while ϕ1 : C→ U1

is the map ϕ(z) =

{
1/z if z 6= 0

∞ if z = 0.
One shows that C∞ is a Riemann surface. (The transition

map here is z 7→ 1/z from C∗ to itself.)

On any Riemann surface X, we can talk of a function f : X → C being analytic or
holomorphic. It is analytic if f ◦ ϕx : Vx → C is so for all x ∈ X. We say that p ∈ X is a
zero of f of order k if the function f ◦ ϕp : Vp → C has a zero at ϕp(p) of order k. Similarly
other notions can be defined. Now, a perceptive reader may recognize that this is precisely
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what we have been doing all along when we dealt with the behaviour of functions at point at
infinity.

We now construct the Riemann surface of log as follows. Let

S := {(z, w) ∈ C2 : z ∈ C∗ and exp(w) = z}.

Thus S is the set of all ordered pairs of points such that the second element is a logarithm of
the first. A better way of recognizing S is to think of it as the graph of exp written in reverse
ordered pairs: (exp(w), w). We define π1, π2 be the natural projection maps. Note that the
map w 7→ (exp(w), w) to S is a homeomorphism.

We show that given (z0, w0) ∈ S, there exists a parametrized neighbourhood of (z0, w0).
Let U be an evenly covered open neighbourhood of z0 in C∗. (Why do they exist?) We can
therefore choose a branch of continuous logarithm F on U in such a way that F (z0) = w0.
Define ϕ : U → S by ϕ(z) = (z, F (z)). This gives a parametrization of the surface S around
(z0, w0). The sheets of the Riemann surface S that cover U are the open sets Vn where

Vn = {(z, w) ∈ S : z ∈ U and w ∈ F (U) + i2πn}.

The function π2 is the ‘logarithm’ defined globally on S and is holomorphic on S: For, let
(z0, w0) ∈ S. Let ϕ : V → U be a parametrization of an open set containing (z0, w0). Then
the composite π2 ◦ϕ : V → C is π2 ◦ϕ(z) = π2(z, F (z)) = F (z), a logarithm of z. It is clearly
holomorphic. It is also a homeomorphism of S onto C. Thus while there exists no holomorphic
logarithm on C∗, we have produced a holomorphic logarithm on S which is homeomorphic to
C!

We now show what happens to a loop in C∗ winding around 0 when lifted to S. Consider
the loop γ : [0, 1]→ C∗ defined by γ(t) = exp(2πit). Let us consider the lift through (1, 0) of
1 = γ(0) = γ(1) in S. We wish to lift γ as a curve starting from (1, 0). Call the lift γ̃. It
is easily seen that the lift is given by γ̃(t) = (exp(2πit), 2πit). In particular, γ̃(1) = (1, 2πi).
Thus the curve γ̃ starting at one sheet ended in a different sheet.
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