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Abstract

In this we state and prove a result which classifies all finitely generated abelian groups.

Theorem 1 (Structure of abelian groups). Every finitely generated abelian group can be writ-
ten as a direct sum of cyclic groups of prime power order and infinite cyclic. The summands
are determined up to isomorphism and order.

Proof. Let A be a finite abelian group (written additively). Let the order n of G be written
as n = pm1

1 · · · p
mk
k into powers of distinct primes. Let Ai be the set of elements x ∈ A whose

order is a power of pi. Then it is easy to see that Ai is a subgroup of A.

We claim that A = A1 ⊕ · · · ⊕Ak.

Let qi := pm1
1 · · · p̂

mi
i · · · p

mk
k . Then q1, · · · , qk have no common factors. Hence there exist

integers ti such that t1q1 + · · ·+ tkqk = 1. Given any x ∈ A, we write x = x1 · · ·+ xk where
xi = tiqix. Note that pmi

i xi = tip
mi
i qix = tinx = 0 so that xi ∈ Ai. Thus we have shown that

A = A1 + · · ·+Ak. This sum is direct since any element of A2 + · · ·+Ak has order relatively
prime to pi.

To complete the proof for the case of finite abelian groups, it is enough to show that any
abelian group A of prime power oder, say pk is a direct sum of cyclic groups and that the
number of summands of a given order is uniquely determined.

If A is cyclic, there is nothing to prove. So, assume that A is not cyclic. Let B be a cyclic
subgroup of maximal order pr generated, say, by b. We claim that there exists an subgroup
C of order p such that B ∩ C = {0}.

Let x ∈ A \B. Let the order of x + B in A/B be ps. Note that s ≥ 1. Hence psx ∈ B so
that psx = mb for some integer m. Now, we observe that

pr−smb = pr−spsx = prc = 0, thanks to the maximality of r.

Hence we conclude that pr divides pr−sm. It follows that p divides m, say, m = pm′. Consider
c := ps−1x −m′b. Clearly, c has order p. By the choice of x, we conclude that c /∈ B. The
subgroup C generated by c is as desired.

We now claim that there exists a subgroup D such that A = B ⊕ D. We prove this by
induction on |A|. Let C be the subgroup just found above. Consider the quotient group
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A := A/C. Then as B ∩ C = 0, we conclude that the image B of B in A will have the
same order as B and hence is cyclic of maximal order pr. By induction , there exists a
subgroup D ≤ A such that A = B ⊕ D. Let D be the inverse image of D under the
quotient map A → A. It is obvious that A = B + D. We claim that the sum is direct.
If x ∈ B ∩ D, then x + C ∈ (D ∩ B = 0, hence x ∈ C. Thus, B ∩ D ⊂ C. Therefore,
B ∩D = (B ∩D) ∩ C ⊂ B ∩ C = 0.

Now an induction on |A| yields the desired decomposition. Also note that if the number
of elements whose order divides pi is ni, then there are ni/ni−1 summands of order pi.

Now let us assume that A is a finitely generated group such that no nontrivial element
is of finite order. Consider a set {a1, · · · , an} of generators of least cardinality. Assume that
there exists a relation m1a1 + · · · + mnan = 0. We may assume that mi’s have no common
factor other than 1. For, if d > 1 is their GCD, writing mi = nid, we see that x :=

∑
i niai is

such that d(
∑

i niai) = 0. If x 6= 0, then x is an element of finite order, a contradiction to our
assumption. So x = 0. This gives a relation among ai’s as we wanted, namely,

∑
i niai = 0

with no common factor of ni’s.

There exists an invertible matrix C = (cij) with integral entries of which (m1, . . . ,mn) is
the first row. (Why?)

Let bi :=
∑

j cijaj . Then {bi : 1 ≤ i ≤ n} generates A. But then b1 = 0 so that {bj : 2 ≤
j ≤ n} is a set of generators of A with n − 1 elements. This contradicts our assumption on
the minimality of n. Thus we see that there is no nontrivial relation between the ai’s. Hence
we have an isomorphism ϕ : Zn → A by setting ϕ(m1, . . . ,mn) := m1a1 + · · · + mnan. That
is, A is a direct sum of n copies of the infinite cyclic group Z. The number n is uniquely
determined by the relation [A : 2A] = 2n.

Finally, let A be any finitely generated abelian group. Let T be the torsion subgroup
consisting of elements of finite order. Then A/T is a finitely generated abelian with no
nontrivial elements of finite order and hence is isomorphic to Zn. Let a1, . . . , an be any
elements A whose images is a set of free generators of A/T . Let B be the subgroup generated
these elements. Then A = B ⊕ T . By the first part, T is a direct sum of cyclic groups of
prime power order while by the second part B is a direct sum of infinite cyclic groups. This
completes the proof of the theorem.

Corollary 2. Every finite abelian group can be written as a direct sum of cyclic groups:
A = B1 ⊕ · · · ⊕Br where |Bi| divides |Bi+1|.

Proof. We saw in the last theorem that A is a direct sum of cyclic groups of prime power
orders, for distinct primes. It is easy to see that the direct sum of cyclic groups of prime
power orders pr and qs where p and q are distinct primes is again a cyclic group. Collecting
cyclic groups of prime power order of the highest power together and then next highest and
so on, we get the decomposition as in the corollary.

Remark 3. The proofs above are from Basic Algebra by P.M. Cohn.
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Theorem 4 (Fundamental Theorem of F.G. Abelian Groups). Let A be a finitely generated
abelian group. Then A can be written as a direct sum of finite number of cyclic groups

A = C1 ⊕ · · · ⊕ Ck,

such that either all Cj’s are all infinite or for some j ≤ k, C1, C2, . . . , Cj are of order
m1, . . . ,mj respectively with m1|m2 · · · |mj and Cj+1, . . . , Ck are infinite.

Proof. Let k be the smallest number such that A is generated by a set of k elements. We
prove the result by induction on k. If k = 1, then A is cyclic and the result is true in this
case. So, we assume that k ≥ 2 and that the result is true for any abelian group generated
by a set of r elements with 1 ≤ r ≤ k − 1.

We first consider the case when A admits a set of k generators {a1, . . . , ak} which have no
relation, that is, if m1a1 + · · · + mkak = 0, then each mi = 0. This implies that each x ∈ A
can be written as x =

∑
i xiai for unique integers xi. Then the map ϕ : Zk → A as follows:

ϕ(m1, . . . ,mk) := m1a1 + · · · + mkak is an isomorphism. In particular, A = C1 ⊕ · · · ⊕ Ck

where Ci is the infinite cyclic group generated by ai.

Let us now assume that A does not have the property (in the first line of the last paragraph)
stated above. That is, given any set {a1, . . . , ak} of generators of A, there exist integers xi,
not all of them zero, such that

∑
i xiai = 0. If such a relation holds, then −

∑
i xiai = 0, so

we may assume that at least one of the xi’s is positive.

Consider now the set S of all generators with k elements. Let S denote the set of all
(x1, . . . , xk) ∈ Zk such that (i) xi > 0 for some i and (ii) there exists a generating set
{a1, . . . , ak} with x1a1 + · · · + xkak = 0. Let m be the least positive integer that occurs
as a component in any k-tuple in S. By permuting the set of generators, we may assume
m = m1, the first coordinate. That is, there exists a generating set {a1, . . . , ak} such that
m1a1 + · · ·+ mkak = 0. If {b1, . . . , bk} is any generating set and if

∑
i yibi = 0, then m1 ≤ yi

for any i with yi > 0.

Claim 1: With the assumption as above, we have m1 divides each of mi .

For, let us write mi = qim1 + ri, with 0 ≤ ri < m1. Consider b1 := a1 + q2a2 + · · ·+ qkak.
We claim that {b1, a2, . . . , ak} is a generating set. For, a1 = b1 − q2a2 − · · · − qkak so that
a1 lies in the subgroup generated by {a2, . . . , ak}. Hence the set {b1, a2, . . . , ak} generates A.
Also, we have m1b1 + r2a2 + · · ·+ rkak = 0. By the ‘minimality’ assumption on m1, it follows
that r2 = · · · = rk = 0. Hence the claim that m1 divides mj is established.

In particular, we have m1b1 = 0. We also infer that m1 is the order of the element b1.
For if m is the order of b1, then mb1 + 0a2 + · · · + 0ak = 0 shows that m1 ≤ m. Hence the
subgroup C1 generated by b1 is cyclic of order m1.

Let A1 be the subgroup generated by {a2, . . . , ak}. Clearly, A = C1 + A1. We claim
that the sum is direct. Suppose a nonzero b ∈ C1 ∩ A1. Then b is of the form x1b1 for
some 0 < x1 < m1. There exist integers x2, . . . , xk such that x1b1 = x2a2 + · · · + xkak.
This leads us to conclude that the relation x1b1 − x2a2 + · · · + xkak = 0 holds among the
set of generators {b1, a2, . . . , ak}. This contradicts our minimality assumption on m1. This
contradiction proves our claim that A = C1 ⊕A1.
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The group A1 is finitely generated by the minimal set {a2, . . . , ak}. Hence, by induction
hypothesis, we can write

A1 = C2 ⊕ · · · ⊕ Ck,

where Ci are cyclic, all of which are either infinite cyclic or there exists 2 ≤ j ≤ k such that
for each 2 ≤ i ≤ j, the group Ci is cyclic of order mi with m2|m3| · · · |mj and Ci is infinite
cyclic for i > j.

Let bi be a generator of Ci for 2 ≤ i ≤ k. Let b2 be of finite order m2. Then m1b1+m2b2+
0b3 + · · ·+ 0bk = 0. The argument of Claim 1 shows that m1 divides m2. This completes the
proof of the theorem.

If A is finite, then all the cyclic groups Ci, 1 ≤ i ≤ k are finite. The next theorem says
that their orders mi are uniquely determined by the requirement m1|m2| · · · |mk.

Theorem 5. Let A be a finite abelian group of order n. Then there exist a unique set of
positive integers m1|m2 · · · |mk such that there exist subgroups Ci of A with |Ci| = mi for
1 ≤ i ≤ k with A = C1 ⊕ · · · ⊕ Ck. Consequently, we have

A ' Zm1 ⊕ · · · ⊕ Zmk
.

Proof. We need only prove the uniqueness of the integers M − 1, . . . ,mk. To this end, let

A = C1 ⊕ · · · ⊕ Ck = D1 ⊕ · · · ⊕Dl,

where Ci, Dj are cyclic subgroups of A with
|Ci| = mi, m1|m2 · · · |mk and |Dj | = nj , n1|n2 · · · |nl. Assume that k ≤ l.

Now Dl has an element of order nl. But the order of any element in A = ⊕iCi is at most
mk. Hence nl ≤ mk. By symmetry, mk ≤ nl so that mk = nl.

Now consider mk−1A := {mk−1a : a ∈ A}. Using the two decompositions of A, we get

mk−1A = (mk−1C1)⊕ · · · ⊕ (mk−1Ck)

= (mk−1D1)⊕ · · · ⊕ (mk−1Dl).

By hypothesis, mi divided mk−1 for 1 ≤ i ≤ k − 1. Hence mk−1Ci = 0 for 1 ≤ i ≤ k − 1.
We therefore see that |mk−1A| = |mk−1Ck| = |mk−1Dl|. It follows that |mk−1Dj | = 1 for
1 ≤ j ≤ l − 1. In particular, for j = l − 1, we see that nl−1 divides mk−1. By symmetry
again, we see that mk−1 divides nl−1 so that mk−1 = nl−1. Proceeding this way, we see that
mk−r = nl−r for 0 ≤ r ≤ k. Since n = mk · · ·m1 = nl · · ·nl−k+1 · · ·n1 = mk · · ·m1nl−k · · ·n1

we deduce that l = k and mi = ni for 1 ≤ i ≤ k.
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