Structure of Finitely Generated Abelian Groups

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Abstract

In this we state and prove a result which classifies all finitely generated abelian groups.

Theorem 1 (Structure of abelian groups). Every finitely generated abelian group can be written as a direct sum of cyclic groups of prime power order and infinite cyclic. The summands are determined up to isomorphism and order.

Proof. Let A be a finite abelian group (written additively). Let the order n of G be written as $n = p_1^{m_1} \cdots p_k^{m_k}$ into powers of distinct primes. Let A_i be the set of elements $x \in A$ whose order is a power of p_i . Then it is easy to see that A_i is a subgroup of A.

We claim that $A = A_1 \oplus \cdots \oplus A_k$.

Let $q_i := p_1^{m_1} \cdots p_i^{m_i} \cdots p_k^{m_k}$. Then q_1, \cdots, q_k have no common factors. Hence there exist integers t_i such that $t_1q_1 + \cdots + t_kq_k = 1$. Given any $x \in A$, we write $x = x_1 \cdots + x_k$ where $x_i = t_iq_ix$. Note that $p_i^{m_i}x_i = t_ip_i^{m_i}q_ix = t_inx = 0$ so that $x_i \in A_i$. Thus we have shown that $A = A_1 + \cdots + A_k$. This sum is direct since any element of $A_2 + \cdots + A_k$ has order relatively prime to p_i .

To complete the proof for the case of finite abelian groups, it is enough to show that any abelian group A of prime power oder, say p^k is a direct sum of cyclic groups and that the number of summands of a given order is uniquely determined.

If A is cyclic, there is nothing to prove. So, assume that A is not cyclic. Let B be a cyclic subgroup of maximal order p^r generated, say, by b. We claim that there exists an subgroup C of order p such that $B \cap C = \{0\}$.

Let $x \in A \setminus B$. Let the order of x + B in A/B be p^s . Note that $s \ge 1$. Hence $p^s x \in B$ so that $p^s x = mb$ for some integer m. Now, we observe that

 $p^{r-s}mb = p^{r-s}p^sx = p^rc = 0$, thanks to the maximality of r.

Hence we conclude that p^r divides $p^{r-s}m$. It follows that p divides m, say, m = pm'. Consider $c := p^{s-1}x - m'b$. Clearly, c has order p. By the choice of x, we conclude that $c \notin B$. The subgroup C generated by c is as desired.

We now claim that there exists a subgroup D such that $A = B \oplus D$. We prove this by induction on |A|. Let C be the subgroup just found above. Consider the quotient group

 $\overline{A} := A/C$. Then as $B \cap C = 0$, we conclude that the image \overline{B} of B in \overline{A} will have the same order as B and hence is cyclic of maximal order p^r . By induction, there exists a subgroup $\overline{D} \leq \overline{A}$ such that $\overline{A} = \overline{B} \oplus \overline{D}$. Let D be the inverse image of \overline{D} under the quotient map $A \to \overline{A}$. It is obvious that A = B + D. We claim that the sum is direct. If $x \in B \cap D$, then $x + C \in (\overline{D} \cap \overline{B} = 0$, hence $x \in C$. Thus, $B \cap D \subset C$. Therefore, $B \cap D = (B \cap D) \cap C \subset B \cap C = 0$.

Now an induction on |A| yields the desired decomposition. Also note that if the number of elements whose order divides p^i is n_i , then there are n_i/n_{i-1} summands of order p^i .

Now let us assume that A is a finitely generated group such that no nontrivial element is of finite order. Consider a set $\{a_1, \dots, a_n\}$ of generators of least cardinality. Assume that there exists a relation $m_1a_1 + \dots + m_na_n = 0$. We may assume that m_i 's have no common factor other than 1. For, if d > 1 is their GCD, writing $m_i = n_i d$, we see that $x := \sum_i n_i a_i$ is such that $d(\sum_i n_i a_i) = 0$. If $x \neq 0$, then x is an element of finite order, a contradiction to our assumption. So x = 0. This gives a relation among a_i 's as we wanted, namely, $\sum_i n_i a_i = 0$ with no common factor of n_i 's.

There exists an invertible matrix $C = (c_{ij})$ with integral entries of which (m_1, \ldots, m_n) is the first row. (Why?)

Let $b_i := \sum_j c_{ij}a_j$. Then $\{b_i : 1 \le i \le n\}$ generates A. But then $b_1 = 0$ so that $\{b_j : 2 \le j \le n\}$ is a set of generators of A with n-1 elements. This contradicts our assumption on the minimality of n. Thus we see that there is no nontrivial relation between the a_i 's. Hence we have an isomorphism $\varphi : \mathbb{Z}^n \to A$ by setting $\varphi(m_1, \ldots, m_n) := m_1a_1 + \cdots + m_na_n$. That is, A is a direct sum of n copies of the infinite cyclic group \mathbb{Z} . The number n is uniquely determined by the relation $[A : 2A] = 2^n$.

Finally, let A be any finitely generated abelian group. Let T be the torsion subgroup consisting of elements of finite order. Then A/T is a finitely generated abelian with no nontrivial elements of finite order and hence is isomorphic to \mathbb{Z}^n . Let a_1, \ldots, a_n be any elements A whose images is a set of free generators of A/T. Let B be the subgroup generated these elements. Then $A = B \oplus T$. By the first part, T is a direct sum of cyclic groups of prime power order while by the second part B is a direct sum of infinite cyclic groups. This completes the proof of the theorem.

Corollary 2. Every finite abelian group can be written as a direct sum of cyclic groups: $A = B_1 \oplus \cdots \oplus B_r$ where $|B_i|$ divides $|B_{i+1}|$.

Proof. We saw in the last theorem that A is a direct sum of cyclic groups of prime power orders, for distinct primes. It is easy to see that the direct sum of cyclic groups of prime power orders p^r and q^s where p and q are distinct primes is again a cyclic group. Collecting cyclic groups of prime power order of the highest power together and then next highest and so on, we get the decomposition as in the corollary.

Remark 3. The proofs above are from *Basic Algebra* by P.M. Cohn.

Theorem 4 (Fundamental Theorem of F.G. Abelian Groups). Let A be a finitely generated abelian group. Then A can be written as a direct sum of finite number of cyclic groups

$$A = C_1 \oplus \cdots \oplus C_k,$$

such that either all C_j 's are all infinite or for some $j \leq k, C_1, C_2, \ldots, C_j$ are of order m_1, \ldots, m_j respectively with $m_1 | m_2 \cdots | m_j$ and C_{j+1}, \ldots, C_k are infinite.

Proof. Let k be the smallest number such that A is generated by a set of k elements. We prove the result by induction on k. If k = 1, then A is cyclic and the result is true in this case. So, we assume that $k \ge 2$ and that the result is true for any abelian group generated by a set of r elements with $1 \le r \le k-1$.

We first consider the case when A admits a set of k generators $\{a_1, \ldots, a_k\}$ which have no relation, that is, if $m_1a_1 + \cdots + m_ka_k = 0$, then each $m_i = 0$. This implies that each $x \in A$ can be written as $x = \sum_i x_i a_i$ for unique integers x_i . Then the map $\varphi \colon \mathbb{Z}^k \to A$ as follows: $\varphi(m_1, \ldots, m_k) := m_1a_1 + \cdots + m_ka_k$ is an isomorphism. In particular, $A = C_1 \oplus \cdots \oplus C_k$ where C_i is the infinite cyclic group generated by a_i .

Let us now assume that A does not have the property (in the first line of the last paragraph) stated above. That is, given any set $\{a_1, \ldots, a_k\}$ of generators of A, there exist integers x_i , not all of them zero, such that $\sum_i x_i a_i = 0$. If such a relation holds, then $-\sum_i x_i a_i = 0$, so we may assume that at least one of the x_i 's is positive.

Consider now the set S of all generators with k elements. Let S denote the set of all $(x_1, \ldots, x_k) \in \mathbb{Z}^k$ such that (i) $x_i > 0$ for some i and (ii) there exists a generating set $\{a_1, \ldots, a_k\}$ with $x_1a_1 + \cdots + x_ka_k = 0$. Let m be the least positive integer that occurs as a component in any k-tuple in S. By permuting the set of generators, we may assume $m = m_1$, the first coordinate. That is, there exists a generating set $\{a_1, \ldots, a_k\}$ such that $m_1a_1 + \cdots + m_ka_k = 0$. If $\{b_1, \ldots, b_k\}$ is any generating set and if $\sum_i y_ib_i = 0$, then $m_1 \leq y_i$ for any i with $y_i > 0$.

Claim 1: With the assumption as above, we have m_1 divides each of m_i .

For, let us write $m_i = q_i m_1 + r_i$, with $0 \le r_i < m_1$. Consider $b_1 := a_1 + q_2 a_2 + \cdots + q_k a_k$. We claim that $\{b_1, a_2, \ldots, a_k\}$ is a generating set. For, $a_1 = b_1 - q_2 a_2 - \cdots - q_k a_k$ so that a_1 lies in the subgroup generated by $\{a_2, \ldots, a_k\}$. Hence the set $\{b_1, a_2, \ldots, a_k\}$ generates A. Also, we have $m_1 b_1 + r_2 a_2 + \cdots + r_k a_k = 0$. By the 'minimality' assumption on m_1 , it follows that $r_2 = \cdots = r_k = 0$. Hence the claim that m_1 divides m_j is established.

In particular, we have $m_1b_1 = 0$. We also infer that m_1 is the order of the element b_1 . For if m is the order of b_1 , then $mb_1 + 0a_2 + \cdots + 0a_k = 0$ shows that $m_1 \leq m$. Hence the subgroup C_1 generated by b_1 is cyclic of order m_1 .

Let A_1 be the subgroup generated by $\{a_2, \ldots, a_k\}$. Clearly, $A = C_1 + A_1$. We claim that the sum is direct. Suppose a nonzero $b \in C_1 \cap A_1$. Then b is of the form x_1b_1 for some $0 < x_1 < m_1$. There exist integers x_2, \ldots, x_k such that $x_1b_1 = x_2a_2 + \cdots + x_ka_k$. This leads us to conclude that the relation $x_1b_1 - x_2a_2 + \cdots + x_ka_k = 0$ holds among the set of generators $\{b_1, a_2, \ldots, a_k\}$. This contradicts our minimality assumption on m_1 . This contradiction proves our claim that $A = C_1 \oplus A_1$. The group A_1 is finitely generated by the minimal set $\{a_2, \ldots, a_k\}$. Hence, by induction hypothesis, we can write

$$A_1 = C_2 \oplus \cdots \oplus C_k,$$

where C_i are cyclic, all of which are either infinite cyclic or there exists $2 \leq j \leq k$ such that for each $2 \leq i \leq j$, the group C_i is cyclic of order m_i with $m_2|m_3|\cdots|m_j$ and C_i is infinite cyclic for i > j.

Let b_i be a generator of C_i for $2 \le i \le k$. Let b_2 be of finite order m_2 . Then $m_1b_1+m_2b_2+0b_3+\cdots+0b_k=0$. The argument of Claim 1 shows that m_1 divides m_2 . This completes the proof of the theorem.

If A is finite, then all the cyclic groups C_i , $1 \le i \le k$ are finite. The next theorem says that their orders m_i are uniquely determined by the requirement $m_1|m_2|\cdots|m_k$.

Theorem 5. Let A be a finite abelian group of order n. Then there exist a unique set of positive integers $m_1|m_2\cdots|m_k$ such that there exist subgroups C_i of A with $|C_i| = m_i$ for $1 \le i \le k$ with $A = C_1 \oplus \cdots \oplus C_k$. Consequently, we have

$$A\simeq \mathbb{Z}_{m_1}\oplus\cdots\oplus\mathbb{Z}_{m_k}.$$

Proof. We need only prove the uniqueness of the integers $M - 1, \ldots, m_k$. To this end, let

$$A = C_1 \oplus \cdots \oplus C_k = D_1 \oplus \cdots \oplus D_l,$$

where C_i, D_j are cyclic subgroups of A with

 $|C_i| = m_i, m_1 | m_2 \cdots | m_k$ and $|D_j| = n_j, n_1 | n_2 \cdots | n_l$. Assume that $k \leq l$.

Now D_l has an element of order n_l . But the order of any element in $A = \bigoplus_i C_i$ is at most m_k . Hence $n_l \leq m_k$. By symmetry, $m_k \leq n_l$ so that $m_k = n_l$.

Now consider $m_{k-1}A := \{m_{k-1}a : a \in A\}$. Using the two decompositions of A, we get

$$m_{k-1}A = (m_{k-1}C_1) \oplus \dots \oplus (m_{k-1}C_k)$$
$$= (m_{k-1}D_1) \oplus \dots \oplus (m_{k-1}D_l).$$

By hypothesis, m_i divided m_{k-1} for $1 \leq i \leq k-1$. Hence $m_{k-1}C_i = 0$ for $1 \leq i \leq k-1$. We therefore see that $|m_{k-1}A| = |m_{k-1}C_k| = |m_{k-1}D_l|$. It follows that $|m_{k-1}D_j| = 1$ for $1 \leq j \leq l-1$. In particular, for j = l-1, we see that n_{l-1} divides m_{k-1} . By symmetry again, we see that m_{k-1} divides n_{l-1} so that $m_{k-1} = n_{l-1}$. Proceeding this way, we see that $m_{k-r} = n_{l-r}$ for $0 \leq r \leq k$. Since $n = m_k \cdots m_1 = n_l \cdots n_{l-k+1} \cdots n_1 = m_k \cdots m_1 n_{l-k} \cdots n_1$ we deduce that l = k and $m_i = n_i$ for $1 \leq i \leq k$.