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Abstract
In this we state and prove a result which classifies all finitely generated abelian groups.

Theorem 1 (Structure of abelian groups). Every finitely generated abelian group can be writ-
ten as a direct sum of cyclic groups of prime power order and infinite cyclic. The summands
are determined up to isomorphism and order.

Proof. Let A be a finite abelian group (written additively). Let the order n of G be written
asn =py" - p,"* into powers of distinct primes. Let A; be the set of elements z € A whose
order is a power of p;. Then it is easy to see that A; is a subgroup of A.

We claim that A= A1 ®--- D Ay.

Let g; := pi"™ - ;Z"Tl --pp®. Then qi,- -+ , g, have no common factors. Hence there exist
integers t; such that t1g1 +--- + txqr = 1. Given any z € A, we write x = x1 - - - + 2 where
z; = tyg;z. Note that p;"z; = t;p]" ¢;x = t;nz = 0 so that x; € A;. Thus we have shown that
A=Ay +---+ Ai. This sum is direct since any element of As + - - -+ Ay has order relatively
prime to p;.

To complete the proof for the case of finite abelian groups, it is enough to show that any
abelian group A of prime power oder, say p¥ is a direct sum of cyclic groups and that the
number of summands of a given order is uniquely determined.

If A is cyclic, there is nothing to prove. So, assume that A is not cyclic. Let B be a cyclic
subgroup of maximal order p” generated, say, by b. We claim that there exists an subgroup
C of order p such that BN C = {0}.

Let x € A\ B. Let the order of x + B in A/B be p°. Note that s > 1. Hence p°z € B so
that p*x = mb for some integer m. Now, we observe that

p" ’mb=p" " ®*p’x = p"c = 0, thanks to the maximality of r.

Hence we conclude that p” divides p"~*

m. It follows that p divides m, say, m = pm’. Consider
c:= p* 'z — m'b. Clearly, c has order p. By the choice of x, we conclude that ¢ ¢ B. The

subgroup C' generated by c is as desired.

We now claim that there exists a subgroup D such that A = B @& D. We prove this by
induction on |A|. Let C be the subgroup just found above. Consider the quotient group



A= A/C. Then as BN C = 0, we conclude that the image B of B in A will have the
same order as B and hence is cyclic of maximal order p”. By induction , there exists a
subgroup D < A such that A = B @ D. Let D be the inverse image of D under the
quotient map A — A. It is obvious that A = B + D. We claim that the sum is direct.
If 2 € BND,thenz+C € (DNB =0, hence z € C. Thus, BN D C C. Therefore,
BNnD=(BnD)nCcBNC=0.

Now an induction on |A| yields the desired decomposition. Also note that if the number
of elements whose order divides p' is n;, then there are n;/n;—; summands of order p’.

Now let us assume that A is a finitely generated group such that no nontrivial element
is of finite order. Consider a set {ai,--- ,a,} of generators of least cardinality. Assume that
there exists a relation mia; + --- + mpa, = 0. We may assume that m;’s have no common
factor other than 1. For, if d > 1 is their GCD, writing m; = n;d, we see that x := ), n;a; is
such that d(>; nsa;) = 0. If z # 0, then z is an element of finite order, a contradiction to our
assumption. So z = 0. This gives a relation among a;’s as we wanted, namely, >, n;a; = 0
with no common factor of n;’s.

There exists an invertible matrix C' = (c¢;;) with integral entries of which (mq,...,m,) is

the first row. (Why?)

Let b; := Zj cijaj. Then {b; : 1 <i < n} generates A. But then by = 0 so that {b; : 2 <
j < n} is a set of generators of A with n — 1 elements. This contradicts our assumption on
the minimality of n. Thus we see that there is no nontrivial relation between the a;’s. Hence
we have an isomorphism ¢: Z"™ — A by setting p(m1,...,my) := miay + - - + mpay,. That
is, A is a direct sum of n copies of the infinite cyclic group Z. The number n is uniquely
determined by the relation [A : 24] = 2™.

Finally, let A be any finitely generated abelian group. Let T be the torsion subgroup
consisting of elements of finite order. Then A/T is a finitely generated abelian with no
nontrivial elements of finite order and hence is isomorphic to Z™. Let ai1,...,a, be any
elements A whose images is a set of free generators of A/T. Let B be the subgroup generated
these elements. Then A = B @ T. By the first part, T is a direct sum of cyclic groups of
prime power order while by the second part B is a direct sum of infinite cyclic groups. This
completes the proof of the theorem. O

Corollary 2. FEvery finite abelian group can be written as a direct sum of cyclic groups:
A= By @ ® B, where |B;| divides |B;1].

Proof. We saw in the last theorem that A is a direct sum of cyclic groups of prime power
orders, for distinct primes. It is easy to see that the direct sum of cyclic groups of prime
power orders p” and ¢° where p and ¢ are distinct primes is again a cyclic group. Collecting
cyclic groups of prime power order of the highest power together and then next highest and
so on, we get the decomposition as in the corollary. O

Remark 3. The proofs above are from Basic Algebra by P.M. Cohn.



Theorem 4 (Fundamental Theorem of F.G. Abelian Groups). Let A be a finitely generated
abelian group. Then A can be written as a direct sum of finite number of cyclic groups

A=C1 @ ®Cy,

such that either all C;’s are all infinite or for some j < k, Cq, Ca,...,C; are of order
mi, ..., mj respectively with mi|ms---|m; and Cji1,...,Cy are infinite.

Proof. Let k be the smallest number such that A is generated by a set of k elements. We
prove the result by induction on k. If kK = 1, then A is cyclic and the result is true in this
case. So, we assume that £ > 2 and that the result is true for any abelian group generated
by a set of r elements with 1 <r <k — 1.

We first consider the case when A admits a set of k generators {ay, ..., a;} which have no
relation, that is, if miaq + - - - + mrag = 0, then each m; = 0. This implies that each x € A
can be written as ¢ = ), x;a; for unique integers z;. Then the map ¢: 7ZF — A as follows:
o(my,...,mg) := miay + -+ - + myay is an isomorphism. In particular, A = C; @ --- @ Cy
where Cj is the infinite cyclic group generated by a;.

Let us now assume that A does not have the property (in the first line of the last paragraph)
stated above. That is, given any set {aj,...,ar} of generators of A, there exist integers z;,
not all of them zero, such that ). x;a; = 0. If such a relation holds, then — %", z;a; = 0, so
we may assume that at least one of the z;’s is positive.

Consider now the set S of all generators with k£ elements. Let S denote the set of all

(z1,...,7) € ZF such that (i) x; > 0 for some i and (ii) there exists a generating set
{ai,...,ax} with x1a; + -+ + zrar = 0. Let m be the least positive integer that occurs
as a component in any k-tuple in S. By permuting the set of generators, we may assume
m = myq, the first coordinate. That is, there exists a generating set {ai,...,ax} such that

myai + -+ +mgag = 0. If {b1,... by} is any generating set and if ), y;b; = 0, then m; < y;
for any ¢ with y; > 0.

Claim 1: With the assumption as above, we have mq divides each of m; .

For, let us write m; = ¢;m1 + r;, with 0 < r; < mq. Consider by := a1 + qas + - - - + qray.

We claim that {b1,a9,...,a;} is a generating set. For, a; = by — qoaa — - -+ — qrax so that
ay lies in the subgroup generated by {ag,...,ax}. Hence the set {b1,aq,...,ar} generates A.
Also, we have m1b; +12a0 + - - - + rpai = 0. By the ‘minimality’ assumption on my, it follows
that ro = --- = rp = 0. Hence the claim that m; divides m; is established.

In particular, we have m1b;y = 0. We also infer that mq is the order of the element by.
For if m is the order of b1, then mb; + Oag + - - - 4+ Oay, = 0 shows that mq; < m. Hence the
subgroup C generated by by is cyclic of order m;.

Let A; be the subgroup generated by {asg,...,ar}. Clearly, A = C; + A;. We claim
that the sum is direct. Suppose a nonzero b € C7 N A;. Then b is of the form x1b; for

some 0 < x1 < my. There exist integers xs,...,z; such that x1b; = x0as + -+ + zpag.
This leads us to conclude that the relation x1b; — x2ao + - - - 4+ zrar = 0 holds among the
set of generators {b1,as,...,ar}. This contradicts our minimality assumption on m;. This

contradiction proves our claim that A = Cy| © A;.



The group A; is finitely generated by the minimal set {aq,...,a;}. Hence, by induction
hypothesis, we can write
A1 =Co & @ C,
where C; are cyclic, all of which are either infinite cyclic or there exists 2 < j < k such that
for each 2 < i < j, the group Cj is cyclic of order m; with ma|mg|---|m; and C; is infinite
cyclic for i > j.
Let b; be a generator of C; for 2 < i < k. Let by be of finite order msy. Then m1by +mobs+

0bg + - - -+ 0bx, = 0. The argument of Claim 1 shows that m; divides mo. This completes the
proof of the theorem. O

If A is finite, then all the cyclic groups C;, 1 < i < k are finite. The next theorem says
that their orders m; are uniquely determined by the requirement mj|ma| - - - |[my.

Theorem 5. Let A be a finite abelian group of order n. Then there exist a unique set of
positive integers my|mg - - - |my such that there exist subgroups C; of A with |C;| = m; for
1<i<kwithA=C1®--- P Cy. Consequently, we have

ATy @ ® Loy,

Proof. We need only prove the uniqueness of the integers M — 1,...,my. To this end, let
A=Ci®---@dCr,=D1®--- & Dy,

where Cj, D; are cyclic subgroups of A with
|Cs| = my, mi|ma - - |my and |Dj| = nj, ni|ng - - - |n;. Assume that k < 1.

Now D; has an element of order n;. But the order of any element in A = &;C; is at most
myg. Hence n; < my. By symmetry, my; < n; so that my = n;.

Now consider my_1A := {my_1a:a € A}. Using the two decompositions of A, we get

mrg_1A = (mp_1C1) D & (mp_1Ck)
= (mp—1D1) @ & (mp_1Dy).

By hypothesis, m; divided my_; for 1 < ¢ < k — 1. Hence m;_1C; =0 for 1 <7 < k — 1.
We therefore see that |my_1A| = |mp_1Ck| = |my_1D;|. It follows that |m;_1D;| = 1 for
1 <j<Il-—1. In particular, for j = [ — 1, we see that n;_; divides mj_1. By symmetry
again, we see that my_1 divides n;_1 so that my_1 = n;_1. Proceeding this way, we see that
Mi—p =ny—p for 0 <r < k. Sincen =mg---my =ny--Ny_fg1---N1 = M- MIN—k - - N1
we deduce that | = k and m; = n; for 1 < <k. O



