Basis Theorem for Finitely Generated Abelian Groups

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Lemma 1. Let a_1, \ldots, a_n , (n > 1), be integers with g.c.d. 1. then there is an $n \times n$ matrix with integer coefficients whose determinant is 1 in which a_1, \ldots, a_n appear as the elements of the first row.

Proof. For n = 2, this is standard. We suppose that for i = 2, ..., n - 1, $a_i = b_i d$ where d is the g.c.d. of a_i 's. Thus b_i 's have g.c.d. 1. By induction b_i are the elements of the first row of a square matrix with determinant 1. $(a_n, d) = 1$ implies there exist $s, t \in \mathbb{Z}$ such that

	$\int b_1 d$	• • •	$b_{n-1}d$	a_n	1
				0	
$sa_n + td = 1$. Choose $e \in \{\pm 1\}$ properly. Consider the matrix		*		÷	.
				0	
	$\langle esb_1 \rangle$	• • •	esb_{n-1}	t /	/
This is a matrix of the required type.				ļ	

Lemma 2. Let x_1, \ldots, x_n be generators of an abelian group written additively. Let a_1, \ldots, a_n be integers with g.c.d. 1. Then $a_1x_1 + \cdots + a_nx_n$ may be chosen as one of a set of generators

for the group. Proof. Let A be as in Lemma 1. Then A^{-1} , the adjoint of A (recall that $A^{-1} = (\det A)^{-1}$.

adj A) has integer entries. Let X be the column vectors on the symbols $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$. Then

the elements of the group corresponding to the rows of the column vector AX are a set of

generators for the group. For $X = A^{-1}X$ so that the generators x_1, \ldots, x_n can be expressed as integer combination of the new generators.

Theorem 3 (Basis Theorem). If G is a finitely generated abelian group, then G is the direct product of cyclic groups.

Proof. Choose n such that every set of generators has at least n elements. Choose a set of n generators such that one of them, say, x_n has minimal order, say, k. The other n-1 elements generates $H \stackrel{<}{\neq} G$. By induction H is the direct product of cyclic groups. We claim that $H \cap \langle x_n \rangle = \{0\}$. For, if not, there exists integers a_1, \ldots, a_{n-1} and $a_n < k$ such that $-a_n x_n +$

 $a_1x_1 + \dots + a_{n-1}x_{n-1} = 0$. If g.c.d. of (a_1, \dots, a_n) is d, then $x = \frac{a_1}{d}x_1 + \dots + \frac{a_{n-1}}{d}x_{n-1} - \frac{a_n}{d}x_n$ is an element of a set of n generators of G of order a divisor of $d < a_n < k$.

Lemma 4. Let G be a finite abelian group. Let H be any subgroup of G. Then there exists a complement K such that $G = H \oplus K$.

Proof. Let M be a subgroup such that $M \cap H = (0)$ and M is maximal with this property. We claim that $G = H \oplus M$. If not, then there exists an $x \in G \setminus (H+M)$. We may assume that the order o(x) is minimal with this property and hence is a prime. Observe that the subgroup $M + \langle x \rangle$ contains M properly and hence $M + \langle x \rangle \cap H \neq (0)$. Let y + jx = h. Note that $j \neq 0$. Now, $jx \in H + M$ But $\langle jx \rangle = \langle x \rangle$ and hence $x \in H + M$, a contradiction. \Box

The structure theorem for FGA groups in invariant factors form is immediate from this and by induction.

Theorem 5. Let G be a finite abelian group. Then G is a finite direct sum of cyclic groups H_i , $1 \le i \le r$ such that $|H_{i+1}|$ divides the order of $|H_i|$ for $1 \le i \le r-1$.

Proof. We prove this by induction on |G| = 1. The result is true if |G| = 1. Assume that the result is true for all natural numbers less than n > 1. Let G be a finite abelian of order n > 1. Let $a \in G$ be of maximal order. Let H_1 be the cyclic group generated by a. If $H_1 = G$, there is nothing to prove. If not, by the last lemma there exists a subgroup $M \leq G$ such that $GH_1 \oplus M$. Since |M| < |G| = n, by induction hypothesis, M is the direct sum of cyclic subgroups H_j , $2 \leq j \leq r$ where $|H_{j+1}|$ divides $|H_j|$ for $2 \leq j < r$. Assume that H_j is the cyclic subgroup generated by a_j , $2 \leq j < n$. Since a is of maximal order, it follows that o(x) divides o(a) for any $x \in G$. In particular, if we let $n_j := o(a_j)$ it follows that $n_r \mid n_{r-1} \mid \cdots \mid n_2 \mid n_1 := m$. The proof is complete. \Box

1. Let G be a finite abelian group. Let p be a prime such that the order of each element of G is of the form p^r . Then |G| is of the form p^n .

Trivial, if we use Cauchy's theorem. If q is any prime divisor (other than p) of |G|, then there exists an element of order q.

We use induction to see a direct proof. If G is cyclic, then there is nothing to prove. Choose $e \neq a \in G$. Then $\langle a \rangle$ is a proper subgroup of G. The order of the quotient group $G/\langle a \rangle$ is less than |G|. The order of each element of $G/\langle a \rangle$ is a power of p. Hence by induction, the order of $G/\langle a \rangle$ is a power of p. Since $|G| = |G/\langle a \rangle | \times |\langle a \rangle|$, the result follows.

2. Let G be a finite abelian group of order $p_1^{\alpha_1} \cdots p_n^{\alpha_n}$, where p_i 's are distinct prime numbers. Let $G(p_i) := \{x \in G : p_i^{\alpha_i} x = 0\}$. Then each $G(p_i)$ is a p_i -subgroup of G.

It is easy to see that this is a subgroup of G. That it is a p_i -group follows from the last item.

3. With the notation as above, we claim that each $x \in G$ can be written as $x = x_1 + \cdots + x_n$ where $x_i \in G(p_i), 1 \le i \le n$. Thus, we have $G = G(p_1) + \cdots + G(p_n)$. Let q_i be defined by $|G| = p_i^{\alpha_i} q_i$. That is, $q_i = p_1^{\alpha_1} \cdots p_i^{\alpha_i} \cdots p_n^{\alpha_n}$. Since p_i 's are distinct, the q_i 's have 1 as their GCD. Hence there exists m_i such that $1 = m_1 q_1 + \cdots + m_n q_n$. Hence we have

$$x = 1 \cdot x = m_1 q_1 x + \dots + m_n q_n x = x_1 + \dots + x_n, \text{ where } x_i = m_i q_i x.$$

Clearly, $p_i^{\alpha_i} x_i = m_i |G| x = 0$ and hence $x_i \in G(p_i)$.

4. The sum in the last item is direct.

Enough to show that if $x_1 + \cdots + x_n = 0$, with $x_i \in G(p_i)$, then each $x_i = 0$. Let p_i and q_i be as earlier. Since they are relatively prime, there exists $s, t \in \mathbb{Z}$ such that $sp_i^{\alpha_i} + tq_i = 1$. Note that $x_i = -(x_1 + \cdots + \hat{x}_i + \cdots + x_n)$. We have

$$x_i = 1 \cdots x_i = sp_i x_i + t \sum_{j \neq i} q_i x_j.$$

Since $x_i \in G(p_i)$, the first summand is zero. The presence of $p_j^{\alpha_j}$ in q_i ensures $q_i x_j = 0$ for $j \neq i$. Hence we conclude that each $x_i = 0$.

5. We have thus proved the following result known as the primary decomposition theorem:

Theorem 6. Let G be a finite abelian group of order $p_1^{\alpha_1} \cdots p_n^{\alpha_n}$, where p_i 's are distinct prime numbers. Let $G(p) := \{x \in G : p^{\alpha}x = 0\}$ where p is one of the p_i 's and α is the corresponding α_i .

6. Let G be a finite abelian p-group. Let $a \in G$ be of maximal order. Let $H := \langle a \rangle$. Then there exists a subgroup $K \leq G$ such that $G = H \oplus K$.

To look at the nontrivial part, assume that G is not cyclic. Let $a \in G$ be of maximal order, say, p^m . We claim that there exists an element $x \in G \setminus \langle a \rangle$ of order p.

Let $b \in G \setminus \langle a \rangle$ be of least possible order. Note that $b \neq 0$. if pb = 0, we are through. Assume that $\operatorname{ord} b = p^r$. Consider pb. Its order is p^{r-1} . By our hypothesis on b, pb must be in $\langle a \rangle$. Thus, pb = ka. Hence we obtain

$$0 = p^{r}b = p^{r1}(pb) = p^{r-1}(ka) = (p^{r-1}k) = a.$$

Since ord $a = p^r$, it follows that p^r divides $p^{r-1}k$ and hence p divides k. Therefore, k = pq for some $q \in \mathbb{Z}$. Let c := b - qa. Then $c \notin \langle a \rangle$ since otherwise $b = c + qa \in \langle a \rangle$, a contradiction. Also, we have

pc = pb - pqa = pb - ka = 0.

We conclude that $c \notin \langle a \rangle$ is of order p.

Changing the notation, we may assume that b is of order p. Clearly, $\langle a \rangle \cap \langle b \rangle = (0)$. (For, otherwise $\langle b \rangle \subset \langle a \rangle$.) It follows that the element $a + \langle b \rangle$ is order p^m in the quotient group $G/\langle b \rangle$. By induction hypothesis, there exists a subgroup, say, \overline{K} such that $G/\langle b \rangle = \langle a + \langle b \rangle \rangle \oplus \overline{K}$. Let $K \leq G$ be such that $\overline{K} = K/\langle b \rangle$.

We claim that G = K + H. For, $\langle b \rangle \subset K$, we have $G = K + (\langle a \rangle + \langle b \rangle) = K + \langle a \rangle$. We claim that $K \cap \langle a \rangle = (0)$. If $x \in K \cap \langle a \rangle$, then $x \in K \cap (\langle a \rangle + \langle b \rangle) = \langle b \rangle$. Thus $x \in \langle a \rangle \cap \langle b \rangle = (0)$.

- 7. Any finite abelian p-group is a direct sum of cyclic p-subgroups. Follows by induction and the last result.
- 8. Are the p-subgroups in the primary decomposition unique?