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Lemma 1. Let ay,...,a,, (n > 1), be integers with g.c.d. 1. then there is an n X n matric
with integer coefficients whose determinant is 1 in which a1, ..., a, appear as the elements of
the first row.

Proof. For n = 2, this is standard. We suppose that for i = 2,...,n — 1, a; = b;d where d
is the g.c.d. of a;’s. Thus b;’s have g.c.d. 1. By induction b; are the elements of the first
row of a square matrix with determinant 1. (a,,d) = 1 implies there exist s,¢ € Z such that

bld cee bn_ld Ay,
0
san, +td = 1. Choose e € {£1} properly. Consider the matrix " :
0
esby -+ esb,_1 t
This is a matrix of the required type.
Lemma 2. Let z1,...,x, be generators of an abelian group written additively. Let aq,...,ap

be integers with g.c.d. 1. Then aix1 + - - -+ apx, may be chosen as one of a set of generators
for the group.

Proof. Let A be as in Lemma 1. Then A~!, the adjoint of A (recall that A=! = (det A)~! -
I

adj A) has integer entries. Let X be the column vectors on the symbols :|. Then
T

the elements of the group corresponding to the rows of the column vector AX are a set of

generators for the group. For X = A~'X so that the generators 1, ..., x, can be expressed

as integer combination of the new generators. O

Theorem 3 (Basis Theorem). If G is a finitely generated abelian group, then G is the direct
product of cyclic groups.

Proof. Choose n such that every set of generators has at least n elements. Choose a set of n
generators such that one of them, say, x, has minimal order, say, k. The other n — 1 elements
generates H ;G. By induction H is the direct product of cyclic groups. We claim that
H N (x,) = {0}. For, if not, there exists integers ay,...,a,—1 and a, < k such that —a,z, +



arr1+---+ap 12,1 = 0. If g.c.d. of (a1,...,a,) is d, then x = Yoy +-- -+ a”dflmn_l —
is an element of a set of n generators of G of order a divisor of d < a,, < k. O

Lemma 4. Let G be a finite abelian group. Let H be any subgroup of G. Then there exists
a complement K such that G = H & K.

Proof. Let M be a subgroup such that M N H = (0) and M is maximal with this property.
We claim that G = H@® M. If not, then there exists an x € G\ (H + M). We may assume that
the order o(x) is minimal with this propery and hence is a prime. Observe that the subgroup
M+ < x > contains M properly and hence M+ < x > NH # (0). Let y + jx = h. Note that
j#0. Now, jo € H+ M But < jox >=< x > and hence x € H + M, a contradiction. O

The structure theorem for FGA groups in invariant factors form is immediate from this
and by induction.

Theorem 5. Let G be a finite abelian group. Then G is a finite direct sum of cyclic groups
H;, 1 <i<r such that |H;y1| divides the order of |H;| for 1 <i <r —1.

Proof. We prove this by induction on |G| = 1. The result is true if |G| = 1. Assume that
the result is true for all natural numbers less than n > 1. Let G be a finite abelian of order
n > 1. Let a € G be of maximal order. Let H; be the cyclic group generated by a. If
H, = G, there is nothing to prove. If not, by the last lemma there exists a subgroup M < G
such that GHy & M. Since |M| < |G| = n, by induction hypothesis, M is the direct sum of
cyclic subgroups Hj, 2 < j < r where |H;;1| divides |H;| for 2 < j < r. Assume that H;
is the cyclic subgroup generated by a;, 2 < j < n. Since a is of maximal order, it follows
that o(x) divides o(a) for any x € G. In particular, if we let n; := o(a;) it follows that
Ny | ny—1 |-+ | n2 | ng := m. The proof is complete. O

1. Let G be a finite abelian group. Let p be a prime such that the order of each element
of G is of the form p". Then |G| is of the form p”.

Trivial, if we use Cauchy’s theorem. If ¢ is any prime divisor (other than p) of |G|, then
there exists an element of order gq.

We use induction to see a direct proof. If G is cyclic, then there is nothing to prove.
Choose e # a € G. Then (a) is a proper subgroup of G. The order of the quotient group
G/ (a) is less than |G|. The order of each element of G/ (a) is a power of p. Hence by
induction, the order of G/ (a) is a power of p. Since |G| = |G/ (a)| X | (a) |, the result
follows. O

2. Let G be a finite abelian group of order p{* ---p&», where p;’s are distinct prime num-
bers. Let G(p;) := {z € G : pj"z = 0}. Then each G(p;) is a p;-subgroup of G.

It is easy to see that this is a subgroup of G. That it is a p;-group follows from the last
item.

3. With the notation as above, we claim that each z € G can be written as x = x1+- - -4z,
where z; € G(p;), 1 <i < n. Thus, we have G = G(p1) + - - - + G(pp).-



Let ¢; be defined by |G| = p;“q;. That is, ¢; = p{* -- p/zo71 -+ pin. Since p;’s are distinct,
the g;’s have 1 as their GCD. Hence there exists m; such that 1 = miq1 + -+ + mngn.
Hence we have

r=1-z=miqz+- -+ mpgr =21 + -+ + Ty, Wherez; = m;q;x.
Clearly, p;“z; = m;|G|z = 0 and hence z; € G(p;).

. The sum in the last item is direct.

Enough to show that if 1 + -+ + z, = 0, with x; € G(p;), then each z; = 0. Let
p; and ¢; be as earlier. Since they are relatively prime, there exists s,t € Z such that
sp;* +tq; = 1. Note that ; = —(z1 + -+ & + - - - + x,). We have

i =1---2; = sp;x; —i—thiacj.
J#
Since z; € G(p;), the first summand is zero. The presence of p?j in ¢; ensures ¢;x; =0
for j # i. Hence we conclude that each x; = 0.

. We have thus proved the following result known as the primary decomposition theorem:

Theorem 6. Let G be a finite abelian group of order pi* - -- p%, where p;’s are distinct
prime numbers. Let G(p) := {x € G : p®x = 0} where p is one of the p;’s and « is the
corresponding o;. O

. Let G be a finite abelian p-group. Let a € G be of maximal order. Let H := (a). Then
there exists a subgroup K < G such that G = H @ K.

To look at the nontrivial part, assume that G is not cyclic. Let a € G be of maximal
order, say, p. We claim that there exists an element z € G \ (a) of order p.

Let b € G\ (a) be of least possible order. Note that b # 0. if pb = 0, we are through.
Assume that ord b = p". Consider pb. Its order is p"~!. By our hypothesis on b, pb must
be in (a). Thus, pb = ka. Hence we obtain

0=p"b=p"(pb) =p ' (ka) = (" 'k) = a.

Since orda = p", it follows that p” divides p"~'k and hence p divides k. Therefore,
k = pq for some q € Z. Let ¢ :== b — ga. Then ¢ ¢ (a) since otherwise b = ¢ + ga € (a),
a contradiction. Also, we have

pc = pb — pga = pb — ka = 0.

We conclude that ¢ ¢ (a) is of order p.

Changing the notation, we may assume that b is of order p. Clearly, (a) N (b) = (0).
(For, otherwise (b) C (a).) It follows that the element a + (b) is order p™ in the
quotient group G/ (b). By induction hypothesis, there exists a subgroup, say, K such
that G/ (b) = (a + (b)) ® K. Let K < G be such that K = K/ (b).

We claim that G = K + H. For, (b) C K, we have G = K + ({a) + (b)) = K + (a).

We claim that K N (a) = (0). If z € KN {a), then z € K N ({(a) + (b)) = (b). Thus
x € (a) N (b) = (0). O



7. Any finite abelian p-group is a direct sum of cyclic p-subgroups.

Follows by induction and the last result.

8. Are the p-subgroups in the primary decomposition unique?



