Approximate Identities

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Definition 1. A sequence (K_n) of functions $K_n \colon \mathbb{R} \to \mathbb{R}$ is called an *approximate identity* if it has the following properties:

- 1. $K_n(x) \ge 0$ for all $x \in \mathbb{R}$ and $n \in \mathbb{N}$.
- 2. K_n are continuous.
- 3. $\int_{-\infty}^{\infty} K_n(x) \, dx = 1 \text{ for all } n.$
- 4. Given $\varepsilon > 0$ and $\delta > 0$ there exists $N \in \mathbb{N}$ such that

$$\int_{-\infty}^{-\delta} K_n(x) \, dx + \int_{\delta}^{\infty} K_n(x) \, dx < \varepsilon, \text{ for } n \ge N.$$

Property 3) means that the area under the graph of K_n is 1. Property 4) means that the area is concentrated around x = 0 for n sufficiently large.

Ex. 2. Let $K: \mathbb{R} \to \mathbb{R}$ be continuous. Assume that K(x) = 0 for $|x| \ge R$ for some R and that $\int_{-\infty}^{\infty} K(x) dx = 1$. Define $K_n(x) = nK(nx)$ for $x \in \mathbb{R}$. Then (K_n) is an approximate identity. (This is a very useful and most important way of generating approximate identities.)

Definition 3. Let $f, g: \mathbb{R}^n \to \mathbb{R}$ be functions. Assume that the integral $\int_{\mathbb{R}^n} f(x-y)g(y) dy$ makes sense (either as a Lebesgue integral or as a Riemann integral) for all $x \in \mathbb{R}^n$. Then we denote it by f * g(x). The function f * g so obtained is called the *convolution* of f and g.

Ex. 4. Let $f := \chi_{[0,1]}$ be the characteristic function of the interval [0,1]. Compute f * f.

Theorem 5. Let (K_n) be an approximate identity. Let $f : \mathbb{R} \to \mathbb{R}$ be continuous. Assume that f(x) = 0 for $|x| \ge R$ for some R. Let (f_n) be defined as follows:

$$f_n(x) := K_n * f(x) := \int_{-\infty}^{\infty} K_n(x-y)f(y) \, dy, \qquad x \in \mathbb{R}.$$

Then f_n converges uniformly to f on \mathbb{R} .

Proof. By the change of variable z := x - y we have

$$f_n(x) = \int_{-\infty}^{\infty} K_n(z) f(x-z) \, dz.$$

Also observe that $f(x) = \int_{-\infty}^{\infty} f(x) K_n(y) \, dy$. Hence we have

$$f_n(x) - f(x) = \int_{-\infty}^{\infty} K_n(y) \left[f(x - y) - f(x) \right] dz.$$
(1)

It is easily seen that f is uniformly continuous on \mathbb{R} . Let $\varepsilon > 0$ be given. For this ε , by the uniform continuity of f there is a δ such that $|f(x+h) - f(x)| < \varepsilon$ for $|h| < \delta$. We split the domain of integral on the RHS into three intervals: $\mathbb{R} = (-\infty, -\delta] \cup [-\delta, \delta] \cup [\delta, \infty)$. Thus we have

$$f_n(x) - f(x) = \left(\int_{-\infty}^{-\delta} + \int_{-\delta}^{\delta} + \int_{\delta}^{\infty}\right) \left[K_n(y)\left(f(x-y) - f(x)\right)\right] dy.$$
(2)

For ε and δ as above, we choose N given by property 4) of (K_n) . The first and the third integrals in Eq. 2 are estimated using the upper bound M for f and the 4th property of (K_n) :

$$|f_n(x) - f(x)| \leq \left(\int_{-\infty}^{-\delta} + \int_{\delta}^{\infty}\right) \left[K_n(y) \left(f(x-y) - f(x)\right)\right] dy$$

$$\leq 2M\varepsilon. \tag{3}$$
(4)

The second one is estimated by uniform continuity and the 3rd property of (K_n) :

$$|f_n(x) - f(x)| \leq \int_{-\delta}^{\delta} K_n(y) |f(x - y) - f(x)| \, dy$$

$$\leq \varepsilon \int_{-\infty}^{\infty} K_n(y) \, dy = \varepsilon.$$
(5)

(6)

From Eq. 3 and Eq. 5 we conclude that $|f_n(x) - f(x)| \le (2M+1)\varepsilon$.

Ex. 6. Let φ be C^{∞} -function which is zero outside a bounded interval, say, [-R, R]. Let $f \colon \mathbb{R} \to \mathbb{R}$ be a bounded continuous function. Show that K * f is C^{∞} . *Hint:* Observe that (K * f)' = K' * f.

Ex. 7. Let f be as in the last exercise. Show that there exists a sequence (f_n) of C^{∞} functions which converge uniformly on compact subsets of \mathbb{R} to f.

Ex. 8. Let Ω be a nonempty open subset of \mathbb{R}^n . Show that the set $C_c^{\infty}(\Omega)$ of infinitely differentiable functions with compact support is dense in $L^p(\Omega)$. *Hint:* The set $C_c(\Omega)$ of continuous functions with compact support is dense in $L^p(\Omega)$

Lemma 9. Let $f: [0,1] \to \mathbb{R}$ be continuous and f(0) = 0 = f(1). Given $\varepsilon > 0$ there exists a polynomial p such that $|f(x) - p(x)| < \varepsilon$ for $x \in [0,1]$.

Proof. Define (k_n) as follows: $k_n(x) := \begin{cases} (1-x^2)^n & |x| \le 1, \\ 0 & |x| > 1 \end{cases}$ Then k_n 's are continuous, $k_n \ge 0$ and even. Also, $\int_{\mathbb{R}} k_n = \int_{-1}^1 k_n = C_n < \infty$. If we set $K_n := k_n/C_n$ then (K_n) is an approximate identity. To verify the 4th property, observe that

$$C_n = \int_{-1}^{1} (1 - x^2)^n \, dx = 2 \int_0^1 (1 - x^2)^n \, dx$$
$$= 2 \int_0^1 (1 - x)^n (1 + x)^n \, dx$$
$$\ge 2 \int_0^1 (1 - x)^n \, dx = 2/(n+1).$$

Hence for any $\delta > 0$,

$$\int_{\delta}^{1} K_n(x) \, dx \le \int_{\delta}^{1} (\frac{n+1}{2})(1-\delta^2)^n \, dx \le (\frac{n+1}{2})(1-\delta^2)^n (1-\delta).$$

If we let $r := (1 - \delta^2)$ then 0 < r < 1 so that $\lim_{n \to \infty} nr^n = 0$.

 (K_n) are called the Landau kernels.

Theorem 10. Let $f: [0,1] \to \mathbb{R}$ be continuous. Given $\varepsilon > 0$ there exists a polynomial p such that $|f(x) - p(x)| < \varepsilon$ for $x \in [0,1]$.

Proof. Consider g(x) := f(x) - f(0) - x(f(1) - f(0)). Then Lemma 9 can be applied to g.

Theorem 11 (Weierstrass Approximation Theorem). Let $f: [a, b] \to \mathbb{R}$ be continuous. Given $\varepsilon > 0$ there exists a polynomial p such that $|f(x) - p(x)| < \varepsilon$ for $x \in [a, b]$.

Ex. 12. Let $f: [0,1] \to \mathbb{R}$ be C^1 . Show that there exists a sequence of polynomials (p_n) such that $p_n \to f$ in C^1 -norm:

$$\sup_{x \in [0,1]} \{ |p_n(x) - f(x)| \} + \sup_{x \in [0,1]} \{ |p'_n(x) - f'(x)| \} \to 0 \text{ as } n \to \infty.$$

Fejer Kernels

Let $D_n(x) := \sum_{k=-n}^n e^{ikx}$ and $K_n(x) := \frac{1}{n+1} \sum_{k=0}^n D_k(x)$. (K_n) is called the *Fejer kernels*.

Ex. 13. Show that

$$K_n(x) = \frac{1}{2(n+1)} \cdot \frac{\sin^2(\frac{(n+1)x}{2})}{\sin^2 \frac{x}{2}}.$$

Hint:

$$\sum_{k=0}^{n} D_k(x) = \sum_{k=0}^{n} \frac{\sin(k+\frac{1}{2})x}{2\sin\frac{x}{2}} = \frac{1}{2\sin x/2} \Im(\sum_{k=0}^{n} e^{i(k+1/2)x}) = \frac{1}{2\sin x/2} \Im(e^{ix/2} \frac{1-e^{i(n+1)x}}{1-e^{ix}}).$$

Ex. 14. The sequence $\{K_n\}$ of Fejer kernels has the following properties:

(i) $K_n \ge 0$. (ii) $\frac{1}{2\pi} \int_{-\pi}^{\pi} K_n = 1$. (iii) Given $\varepsilon > 0$ and $\delta > 0$, there exists N such that if $n \ge N$ then

$$(\int_{-\pi}^{-\delta} + \int_{\delta}^{\pi})K_n < \varepsilon.$$

Hint: To prove (iii) observe that

$$\frac{1}{n} \int_{\delta}^{\pi} \frac{\sin^2 nt/2}{\sin^2 t/2} dt \le \frac{1}{n} \int_{\delta}^{\pi} \frac{1}{\sin^2 t/2} dt$$

and the last integral is a real number.

Definition 15. A sequence $\{K_n\}$ of real valued continuous functions in $[-\pi, \pi]$ (with period 2π) is called an *approximate identity* **on** $[-\pi, \pi]$ if it has the three properties listed in the last exercise. Thus the sequence $\{K_n\}$ of Fejer kernels is an approximate identity on $[-\pi, \pi]$.

Ex. 16. Let $\{K_n\}$ be an approximate identity on $[-\pi, \pi]$. Let f be a continuous function as $[-\pi, \pi]$ of period 2π . Then $f_n(x) := f * K_n(x) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(t) K_n(x-t) dt$ converges uniformly to f on $[-\pi, \pi]$. *Hint:* Proceed as in the proof of Thm. 5 exploiting the periodicity of the kernels and that of the function f in a change of variable.

Remark 17. Fejer kernels make their appearance in the study of convergence of Fourier series. If we take K_n to be the Fejer kernels in the last exercise then it is known as the Fejer's theorem. It says that the (C, 1)-sums of the Fourier series of a continuous periodic functions converges uniformly to the function.

Dirichlet Problem on the Upper Half Plane

Ex. 18. Let $K(x) := \frac{1}{\pi} \frac{1}{1+x^2}$ for $x \in \mathbb{R}$. Then K is continuous, nonnegative, even and $\int_{\mathbb{R}} K = 1$. We let

$$K_y(x) := \frac{1}{y}K(\frac{x}{y}) = \frac{1}{\pi}\frac{y}{y^2 + x^2}, \qquad y > 0.$$

 $(K_y)_{y>0}$ is called the Poisson kernel for the upper half plane. Then $f(x,y) := f_y(x) := K_y * f(x) \to f(x)$ as $y \to 0$ for any continuous integrable function f on \mathbb{R}

Ex. 19. Let the notation be as above. Let

$$u(x,y) := K_y * f(x) = \frac{1}{\pi} \int_{\mathbb{R}} \frac{y}{y^2 + (x-y)^2} f(y) \, dy.$$

Then u satisfies the Laplace equation on the upper half plane $\mathbb{H} := \{(x, y) : y > 0\} \subset \mathbb{R}^2$ and is a solution of the boundary value problem

$$\Delta u = 0$$
 on \mathbb{H} and $u(x,0) = f(x)$ for $x \in \mathbb{R}$.

Hint: Observe that $\frac{y}{y^2+x^2}$ is the imaginary part of $\frac{-1}{z}$, a holomorphic function on \mathbb{H} and hence is harmonic there.

Dirichlet Problem on the Unit Disk

Definition 20. Let the Poisson kernels $(P_r(\theta))$ be defined as follows:

$$P_{r}(e^{i\theta}) = \frac{1}{2\pi} \sum_{-\infty}^{\infty} r^{|n|} e^{in\theta}$$
$$= \frac{1}{2\pi} \frac{1 - r^{2}}{1 - 2r\cos(\theta) + r^{2}}$$
$$= \frac{1}{2\pi} \frac{1 - r^{2}}{|1 - re^{i(\theta)}|^{2}}$$
$$= \frac{1}{2\pi} \Re(\frac{1 + re^{it}}{1 - re^{it}}).$$

Ex. 21. Show that (P_r) is an approximate identity where the 4th property is rephrased as $r \to 1$ in place $n \to \infty$.

Definition 22. Let B(0,1) be the unit disk in \mathbb{R}^2 . Let S^1 denote its boundary. Let Δ denote the Laplacian, the second order differential operator defined on any C^2 -function u as follows: $\Delta u(x,y) := \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$. Let f be a continuous function on S^1 . The Dirichlet problem is to solve the boundary value problem: Find a function $u \in C(B[0,1])$ such that

$$\Delta u = 0$$
 on $B(0,1)$ and $u(x,y) = f(x,y)$ for $(x,y) \in S^1$.

Ex. 23. Show that the Dirichlet problem on the unit disk in \mathbb{R}^2 has a solution if the boundary data f is continuous.

Gaussian Kernels

Ex. 24. Let $K(x) := \frac{1}{\sqrt{\pi}} e^{-x^2}$ for $x \in \mathbb{R}^2$. Then K satisfies the conditions of Exer. 2. Let f integrable and continuous on \mathbb{R} . Define

$$u(x,t) := K_{\sqrt{t}} * f(x) := \frac{1}{\sqrt{\pi t}} \int_{\mathbb{R}} f(u) e^{\frac{-(x-u)^2}{t}} du.$$

Then u satisfies the initial value problem for the heat equation

$$\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}, \qquad u(x,0) = f(x), \quad x \in \mathbb{R}.$$

Ex. 25. Deduce Weierstrass approximation theorem from the above exercise Ex. 24. (This is Weierstrass original proof.) *Hint:* Note that u(x,t) can be considered as a function of the complex variable z (replacing x by z) and it is entire on \mathbb{C} . Now partial sums of the power expansion of this entire functions may do the job.

1 Graphs of Various Approximate Identities

Heat or Gaussian Kernel

$$K_{t}(x) := \frac{1}{\sqrt{4\pi t}} e^{-x^{2}/4t}$$

Figure 1: Graph of $K_t(x)$, for t = 0.1

Figure 3: Graph of $K_t(x)$, for t = 0.005

Figure 5: Graph of $K_t(x)$, for t = 0.0005

Figure 4: Graph of $K_t(x)$, for t = 0.001

Figure 6: Graph of $K_t(x)$, for t = 0.0001

Figure 7: Graph of $K_t(x)$, for t = 0.00005

Figure 8: Graph of $K_t(x)$, for t = 0.00001

Fejer Kernels

Figure 1: Graph of $K_n(x), n = 2, \cdots, 5$

Figure 2: Graph of $K_{10}(x)$

Figure 3: Graph of $K_n(x), n = 5, 8, 10, 12$

Figure 4: Graph of $K_n(x), n = 2, \cdots, 12$

Poisson Kernels $P_r(t) := \frac{1-r^2}{2\pi} \frac{1}{1-2r\cos t+r^2}$.

Figure 1: Graph of $P_r(t)$, for r = 0.5

Figure 3: Graph of $P_r(t)$, for r = 0.7

Figure 5: Graph of $P_r(t)$, for r = 0.85

Figure 2: Graph of $P_r(t)$, for r = 0.6

Figure 4: Graph of $P_r(t)$, for r = 0.8

Figure 6: Graph of $P_r(t)$, for r = 0.9

Landau Kernels: $L_n(x) := (1 - x^2)^n / (\int_{-1}^1 (1 - x^2)^n dx), \quad |x| \le 1$

Figure 7: Graph of $L_1(x)$

Figure 8: Graph of $L_n(x)$, for n = 2, 4, 6, 8

Figure 9: Graph of $L_n(x)$ for n = 20, 25, 30, 35, 40