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Definition 1. A sequence (Kn) of functions Kn : R → R is called an approximate identity if
it has the following properties:

1. Kn(x) ≥ 0 for all x ∈ R and n ∈ N.
2. Kn are continuous.
3.

∫∞
−∞Kn(x) dx = 1 for all n.

4. Given ε > 0 and δ > 0 there exists N ∈ N such that
∫ −δ

−∞
Kn(x) dx+

∫ ∞

δ
Kn(x) dx < ε, for n ≥ N.

Property 3) means that the area under the graph of Kn is 1. Property 4) means that the
area is concentrated around x = 0 for n sufficiently large.

Ex. 2. Let K : R → R be continuous. Assume that K(x) = 0 for |x| ≥ R for some R and
that

∫∞
−∞K(x) dx = 1. Define Kn(x) = nK(nx) for x ∈ R. Then (Kn) is an approximate

identity. (This is a very useful and most important way of generating approximate identities.)

Definition 3. Let f, g : Rn → R be functions. Assume that the integral
∫

Rn f(x− y)g(y) dy
makes sense (either as a Lebesgue integral or as a Riemann integral) for all x ∈ R

n. Then we
denote it by f ∗ g(x). The function f ∗ g so obtained is called the convolution of f and g.

Ex. 4. Let f := χ[0,1] be the characteristic function of the interval [0, 1]. Compute f ∗ f .
Theorem 5. Let (Kn) be an approximate identity. Let f : R → R be continuous. Assume

that f(x) = 0 for |x| ≥ R for some R. Let (fn) be defined as follows:

fn(x) := Kn ∗ f(x) :=
∫ ∞

−∞
Kn(x− y)f(y) dy, x ∈ R.

Then fn converges uniformly to f on R.

Proof. By the change of variable z := x− y we have

fn(x) =

∫ ∞

−∞
Kn(z)f(x− z) dz.

Also observe that f(x) =
∫∞
−∞ f(x)Kn(y) dy. Hence we have

fn(x)− f(x) =

∫ ∞

−∞
Kn(y) [f(x− y)− f(x)] dz. (1)
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It is easily seen that f is uniformly continuous on R. Let ε > 0 be given. For this ε, by the
uniform continuity of f there is a δ such that |f(x+ h)− f(x)| < ε for |h| < δ. We split the
domain of integral on the RHS into three intervals: R = (−∞,−δ] ∪ [−δ, δ] ∪ [δ.∞). Thus we
have

fn(x)− f(x) =

(
∫ −δ

−∞
+

∫ δ

−δ
+

∫ ∞

δ

)

[Kn(y) (f(x− y)− f(x))] dy. (2)

For ε and δ as above, we choose N given by property 4) of (Kn). The first and the third
integrals in Eq. 2 are estimated using the upper bound M for f and the 4th property of (Kn):

|fn(x)− f(x)| ≤
(
∫ −δ

−∞
+

∫ ∞

δ

)

[Kn(y) (f(x− y)− f(x))] dy

≤ 2Mε. (3)

(4)

The second one is estimated by uniform continuity and the 3rd property of (Kn):

|fn(x)− f(x)| ≤
∫ δ

−δ
Kn(y)|f(x− y)− f(x)| dy

≤ ε

∫ ∞

−∞
Kn(y) dy = ε. (5)

(6)

From Eq. 3 and Eq. 5 we conclude that |fn(x)− f(x)| ≤ (2M + 1)ε.

Ex. 6. Let ϕ be C∞-function which is zero outside a bounded interval, say, [−R,R]. Let
f : R → R be a bounded continuous function. Show that K ∗ f is C∞. Hint: Observe that
(K ∗ f)′ = K ′ ∗ f .
Ex. 7. Let f be as in the last exercise. Show that there exists a sequence (fn) of C∞

functions which converge uniformly on compact subsets of R to f .

Ex. 8. Let Ω be a nonempty open subset of Rn. Show that the set C∞
c (Ω) of infinitely

differentiable functions with compact support is dense in Lp(Ω). Hint: The set Cc(Ω) of
continuous functions with compact support is dense in Lp(Ω)

Lemma 9. Let f : [0, 1] → R be continuous and f(0) = 0 = f(1). Given ε > 0 there exists a

polynomial p such that |f(x)− p(x)| < ε for x ∈ [0, 1].

Proof. Define (kn) as follows: kn(x) :=

{

(1− x2)n |x| ≤ 1,

0 |x| > 1
Then kn’s are continuous, kn ≥ 0

and even. Also,
∫

R
kn =

∫ 1
−1 kn = Cn < ∞. If we set Kn := kn/Cn then (Kn) is an

approximate identity. To verify the 4th property, observe that

Cn =

∫ 1

−1
(1− x2)n dx = 2

∫ 1

0
(1− x2)n dx

= 2

∫ 1

0
(1− x)n(1 + x)n dx

≥ 2

∫ 1

0
(1− x)n dx = 2/(n + 1).
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Hence for any δ > 0,
∫ 1

δ
Kn(x) dx ≤

∫ 1

δ
(
n+ 1

2
)(1− δ2)n dx ≤ (

n+ 1

2
)(1− δ2)n(1− δ).

If we let r := (1− δ2) then 0 < r < 1 so that limn→∞ nrn = 0.

(Kn) are called the Landau kernels.

Theorem 10. Let f : [0, 1] → R be continuous. Given ε > 0 there exists a polynomial p such

that |f(x)− p(x)| < ε for x ∈ [0, 1].

Proof. Consider g(x) := f(x) − f(0) − x (f(1)− f(0)). Then Lemma 9 can be applied to
g.

Theorem 11 (Weierstrass Approximation Theorem). Let f : [a, b] → R be continuous. Given

ε > 0 there exists a polynomial p such that |f(x)− p(x)| < ε for x ∈ [a, b].

Ex. 12. Let f : [0, 1] → R be C1. Show that there exists a sequence of polynomials (pn) such
that pn → f in C1-norm:

sup
x∈[0,1]

{|pn(x)− f(x)|}+ sup
x∈[0,1]

{|p′n(x)− f ′(x)|} → 0 as n → ∞.

Fejer Kernels

Let Dn(x) :=
∑n

k=−n e
ikx and Kn(x) :=

1

n+ 1

n
∑

k=0

Dk(x). (Kn) is called the Fejer kernels.

Ex. 13. Show that

Kn(x) =
1

2(n+ 1)
· sin2( (n+1)x

2 )

sin2 x
2

.

Hint:

n
∑

k=0

Dk(x) =

n
∑

k=0

sin(k + 1
2)x

2 sin x
2

=
1

2 sinx/2
ℑ(

n
∑

k=0

ei(k+1/2)x) =
1

2 sin x/2
ℑ(eix/2 1− ei(n+1)x

1− eix
).

Ex. 14. The sequence {Kn} of Fejer kernels has the following properties:
(i) Kn ≥ 0.

(ii)
1

2π

∫ π

−π
Kn = 1.

(iii) Given ε > 0 and δ > 0, there exists N such that if n ≥ N then

(

∫ −δ

−π
+

∫ π

δ
)Kn < ε.

Hint: To prove (iii) observe that

1

n

∫ π

δ

sin2 nt/2

sin2 t/2
dt ≤ 1

n

∫ π

δ

1

sin2 t/2
dt

and the last integral is a real number.
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Definition 15. A sequence {Kn} of real valued continuous functions in [−π, π] (with period
2π) is called an approximate identity on [−π, π] if it has the three properties listed in the last
exercise. Thus the sequence {Kn} of Fejer kernels is an approximate identity on [−π, π].

Ex. 16. Let {Kn} be an approximate identity on [−π, π]. Let f be a continuous function as
[−π, π] of period 2π. Then fn(x) := f ∗Kn(x) =

1
2π

∫ π
−π f(t)Kn(x− t)dt converges uniformly

to f on [−π, π]. Hint: Proceed as in the proof of Thm. 5 exploiting the periodicity of the
kernels and that of the function f in a change of variable.

Remark 17. Fejer kernels make their appearance in the study of convergence of Fourier
series. If we take Kn to be the Fejer kernels in the last exercise then it is known as the Fejer’s
theorem. It says that the (C, 1)-sums of the Fourier series of a continuous periodic functions
converges uniformly to the function.

Dirichlet Problem on the Upper Half Plane

Ex. 18. Let K(x) := 1
π

1
1+x2 for x ∈ R. Then K is continuous, nonnegative, even and

∫

R
K = 1. We let

Ky(x) :=
1

y
K(

x

y
) =

1

π

y

y2 + x2
, y > 0.

(Ky)y>0 is called the Poisson kernel for the upper half plane. Then f(x, y) := fy(x) :=
Ky ∗ f(x) → f(x) as y → 0 for any continuous integrable function f on R

Ex. 19. Let the notation be as above. Let

u(x, y) := Ky ∗ f(x) =
1

π

∫

R

y

y2 + (x− y)2
f(y) dy.

Then u satisfies the Laplace equation on the upper half plane H := {(x, y) : y > 0} ⊂ R
2 and

is a solution of the boundary value problem

∆u = 0 on H and u(x, 0) = f(x) for x ∈ R.

Hint: Observe that y
y2+x2 is the imaginary part of −1

z , a holomorphic function on H and hence
is harmonic there.
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Dirichlet Problem on the Unit Disk

Definition 20. Let the Poisson kernels (Pr(θ)) be defined as follows:

Pr(e
iθ) =

1

2π

∞
∑

−∞
r|n|einθ

=
1

2π

1− r2

1− 2rcos(θ) + r2

=
1

2π

1− r2

|1− rei(θ)|2

=
1

2π
ℜ(1 + reit

1− reit
).

Ex. 21. Show that (Pr) is an approximate identity where the 4th property is rephrased as
r → 1 in place n → ∞.

Definition 22. Let B(0, 1) be the unit disk in R
2. Let S1 denote its boundary. Let ∆ denote

the Laplacian, the second order differential operator defined on any C2-function u as follows:
∆u(x, y) := ∂2u

∂x2 + ∂2u
∂y2

. Let f be a continuous function on S1. The Dirichlet problem is to

solve the boundary value problem: Find a function u ∈ C(B[0, 1]) such that

∆u = 0 on B(0, 1) and u(x, y) = f(x, y) for (x, y) ∈ S1.

Ex. 23. Show that the Dirichlet problem on the unit disk in R
2 has a solution if the boundary

data f is continuous.

Gaussian Kernels

Ex. 24. Let K(x) := 1√
π
e−x2

for x ∈ R
2. Then K satisfies the conditions of Exer. 2. Let f

integrable and continuous on R. Define

u(x, t) := K√
t ∗ f(x) :=

1√
πt

∫

R

f(u)e
−(x−u)2

t du.

Then u satisfies the initial value problem for the heat equation

∂u

∂t
= 4

∂2u

∂x2
, u(x, 0) = f(x), x ∈ R.

Ex. 25. Deduce Weierstrass approximation theorem from the above exercise Ex. 24. (This
is Weierstrass original proof.) Hint: Note that u(x, t) can be considered as a function of the
complex variable z (replacing x by z) and it is entire on C. Now partial sums of the power
expansion of this entire functions may do the job.

5



1 Graphs of Various Approximate Identities

Heat or Gaussian Kernel

Kt(x) :=
1√
4πt

e−x2/4t
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Figure 1: Graph of Kt(x), for t = 0.1
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Figure 2: Graph of Kt(x), for t = 0.05
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Figure 3: Graph of Kt(x), for t = 0.005
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Figure 4: Graph of Kt(x), for t = 0.001
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Figure 5: Graph of Kt(x), for t = 0.0005
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Figure 6: Graph of Kt(x), for t = 0.0001
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Figure 7: Graph of Kt(x), for t = 0.00005
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Figure 8: Graph of Kt(x), for t = 0.00001

Fejer Kernels

Kn(x) =
1

2(n+ 1)
· sin2( (n+1)x

2 )

sin2 x
2

.
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Figure 1: Graph of Kn(x), n = 2, · · · , 5
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Figure 2: Graph of K10(x)
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Figure 3: Graph of Kn(x), n = 5, 8, 10, 12
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Figure 4: Graph of Kn(x), n = 2, · · · , 12
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Poisson Kernels Pr(t) :=
1−r2

2π
1

1−2r cos t+r2
.
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Figure 1: Graph of Pr(t), for r = 0.5
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Figure 2: Graph of Pr(t), for r = 0.6
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Figure 3: Graph of Pr(t), for r = 0.7
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Figure 4: Graph of Pr(t), for r = 0.8
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Figure 5: Graph of Pr(t), for r = 0.85
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Figure 6: Graph of Pr(t), for r = 0.9
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Landau Kernels: Ln(x) := (1− x2)n/(
∫ 1

−1
(1− x2)n dx), |x| ≤ 1
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Figure 7: Graph of L1(x)
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Figure 8: Graph of Ln(x), for n = 2, 4, 6, 8
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Figure 9: Graph of Ln(x) for n = 20, 25, 30, 35, 40
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