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F stands for a field in the sequel.

1 Polynomial Ring F [x]

Topics: Reducible and irreducible; Various facts such as Euclidean domain, Irreducibility
criterion such as Eisenstein’s.

Theorem 1 (Division Algorithm). Let F be a field, and let f ∈ [F [x] be a nonzero polynomial
with coefficients in F . Then given any polynomial g ∈ F [x], there exist unique polynomials
q, r ∈ F [x] such that g = fq + r with either r = 0 or deg r < deg f .

Corollary 2. The polynomial ring F [x] is a PID.

Definition 3. Let f1, . . . , fk ∈ F [x]. They are said to be coprime if a polynomial q divides
each fj , then q is a constant.

Proposition 4. Let fj ∈ F [x], 1 ≤ j ≤ k, be coprime. Then there exist gj ∈ F [x], 1‘j ≤ n,
such that

f1(x)g1(x) + · · ·+ fk(x)gk(x) = 1.

Definition 5. A non-constant polynomial f ∈ F [x] is said to be irreducible over F if
q ∈ F [x] divides, then q is a constant.

Proposition 6. Let f ∈ F [x] be irreducible. Let f divide gh where g, h ∈ F [x]. The either f
divides g or f divides h.

Theorem 7. Let f ∈ F [x] be irreducible. Then the quotient ring F [x]/(f) is a field.

Definition 8. A polynomial f ∈ Z[x] is said to be primitive if the GCD of the coefficients is
1. In particular, any monic polynomial is primitive.

Lemma 9 (Gauss Lemma). Let f, g ∈ Z[x] be primitive. Then the product fg is primitive.

Theorem 10. A polynomial f ∈ Z[x] is irreducible over Q iff it is irreducible in the ring
Z[x], that is, it cannot be expressed as a product of polynomials in Z[x] of lower degree.

Theorem 11 (Eisenstein’s Irreducibilty Criterion). Let f = a0 + a1x + · · · + anx
n ∈ Z[x].

Let p ∈ N be a prime. Assume that (i) p does not divide an, (ii) p divides aj, 0 ≤ j ≤ n− 1,
and (iii) p2 does not divide a0. Then f is irreducible over Q.
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2 Extension of Fields

Topics: Algebraic element, minimal polynomial of an algebraic element, algebraic extension,
degree of extension, finite extensions, tower theorem: [L : F ] = [L : K][K : F ], Kronecker’s
theorem, Adjunction of roots. K(α) = K[α] if α is algebraic over K.

Definition 12. Let F be a field. An extension E/F is an imbedding of F into some field E,
in other words, F is a ‘subfield’ of E, then we say that E is an extenion of F and write it as
E/F (read as extension field E over F ).

Let E/F be an extension of F . Then E is a vector space over F in an obvious way. The
degree of the extension, denoted by [E : F ] is by definition dimF E, the dimension of the
vector space E over the underlying field F .

The extension E/F is finite if [E : F ] is finite.

Let E/F be an extension. Let S ⊂ E. Then F (S) denotes the smallest subfield of E
containing F and S. We then say that F (S) is the field obtained from F by adjoining S.

If S = {α1, . . . , αk}, we denote F (S) by F (α1, . . . , αk).

A field extension E/F is said to be simple if E = F (α) for some α ∈ E.

Example 13. Let F = Q and E = R or E = C. Then E/F is an extension, which are not
finite extensions.

C/R is a simple extension.

Example 14. Let E be any field and F its prime subfield. Then E/F is an extension. (It
may happen E = F !)

Example 15. Let F be any field and E := F (x), the field of rational functions on F . Then
E/F is a simple extension.

Example 16. Let F := Q and E := Q+
√

2Q := {a+b
√

2 : a, b ∈ Q} ⊂ R. It is easy to check
that E is a subfield of R and that E/F is an extension. (What is the inverse of a+ b

√
2?)

Theorem 17 (Tower Law). Let E/F and K/E be extension fields. Then the extension K/F
is finite iff the extensions E/F and K/E are finite and we have [K : F ] = [K : E][E : F ].

Ex. 18. Show that a finite extension of prime degree is a simple extension.

Ex. 19. Find the degrees of the following extensions: (i) E := Q( 3
√

2, i) and F = Q, (ii)
Q(
√

2,
√

3)/Q.

Ex. 20. Let E,K,F are fields such that F ⊂ K ⊂ E. Show that if [E : F ] is finite then
[E : K] and [K : F ] are finite and that [E : F ] = [E : K][K : F ].

Ex. 21. Let p and q be distinct primes. Show that Q(
√
p,
√
q)/Q is of degree 4. Using

induction show that [Q(
√
p1, . . . ,

√
pn) : Q] = 2n.

Ex. 22. Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Ex. 23. This is an extension of the last exercise. Let CharF 6= 2. Assume that E = F (α, β)
such that α2 = a ∈ F and β2 = b ∈ F with a 6= b. Show that E = F (α+ β).
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Ex. 24 (A proposition). Let E/F be a simple extension, say, E = F (α). Then precisely, one
of the following holds:

(i) There does not exist any nonzero-polynomial f ∈ F [x] with f(α) = 0.
(ii) There exists a unique monic polynomial f ∈ F [x] of least degree with f(α) = 0. Hint:

Consider the kernel of the ring homomorphism f 7→ f(α) from F [x] to E;F (α).

Definition 25. Let E/F be an extension and α ∈ E. Then α is said to be algebraic over
F if there exists 0 6= f ∈ F [x] such that f(α) = 0. The extension E/F is algebraic if each
element α ∈ E is algebraic over F .

An element α ∈ E is transcendental over F if it is not algebraic over F .

Proposition 26. Any finite extension E/F is algebraic.

Proposition 27 (Minimal polynomial of an algebraic element). Let E/F be an extension
and α ∈ E be algebraic over F . Then there exists a unique irreducible monic polynomial
mα = mα,F ∈ F [x] with the following property: f ∈ F [x] is such that f(α) = 0, iff mα divides
f .

Definition 28. The polynomial mα of the last proposition is said to be the minimal polyno-
mial of α over F .

Ex. 29. Consider the extension C/Q. Find the minimal polynomial of the following elements:
(i)
√

2, (ii)
√
−1, (iii)

√
2 +
√

3, (iv) ζ, a primitive root of unity where p is a prime and (v)
ζ6, a primitive sixth root of unity.

Ex. 30. Find the minimal polynomial

Ex. 31. Let E/F be an extension and let α ∈ E be algebraic over F . Show that the subfield
F (α) = {p(α) : p ∈ F [x]}.

Theorem 32. A simple extension F (α)/F is finite iff α is algebraic over F . Also, in such a
case, we have [F (α) : F ] = degmα.

Corollary 33. A field extension E/F is finite iff there exist α1, . . . , αk ∈ E such that E =
F (α1, . . . , αk) and each αj is algebraic over F .

Ex. 34. Let E/F be an extension with α ∈ E. Show that the following are equivalent:
(i) α is algebraic over F .
(ii) The evaluation map p 7→ p(α) from F [x] to E has nonzero kernel.
(iii) F (α)/F is a finite extension.

Ex. 35. Let E/F and L/E be algebraic extensions. Show that L/F is an algebraic extension.

Ex. 36. Let E/F be an extension, αj ∈ E, 1 ≤ j ≤ n be algebraic over F . Show that
F (α1, . . . , αn)/F is a finite extension.

Ex. 37. Let E/F be an extension. Assume that α, β ∈ E are algebraic over F . Show that
α± β, αβ and α/β (if β 6= 0) are algebraic over F . Hint: Last exercise.

Ex. 38. Let E/F be an extension. Let F be the set of all elements of E which are algebraic
over F . Show that F is a subfield of F . (F is called the algebraic closure of F in E.)

Notation: Q stands for the algebraic closure of Q in C. Show that Q is not a finite
extension of Q.
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Ex. 39. Let E/F be a finite extension. Assume that for any two subfields K1,K2 of E either
K1 ⊂ K2 or K2 ⊂ K1. Show that E/F is a simple extension.

Ex. 40. Let E = F (α) be algebraic over F with [F (α) : F ] being odd. Show that F (α) =
F (α2).

Definition 41. Let E/F and K/F be two extensions of F . Then an F -homomorphism θ is
a field homomorphism θ : E → K such that θ(a) = a for all a ∈ F .

An F -automorphism of E/F is an F -isomorphism of E onto itself.

The extensions E/F and K/F are said to be K-isomorphic if there exists an isomorphism
θ : E → K which is also an F -homomorphism.

Ex. 42. Let E/F be an extension such that E = F (α1, . . . , αk). If an F -automorphism θ of
E leaves each of αj , 1 ≤ j ≤ k fixed, then show that θ is the identity. Hence deduce that any
two F -automorphism that agree on αj ’s must be the same.

3 Splitting Fields and Normal Extensions

Topics: Definition of a splitting field of a polynomial, uniqueness, normal extensions, ele-
ments conjugate over a field F .

Definition 43. Let f ∈ F [x] and E/F be an extension. We say that f splits over E if either
f is a constant polynomial or if there exist α1, . . . , αn ∈ E such that f = c(x−α1) · · · (x−αn)
where c ∈ F is the leading coefficient of f .

The field E is said to be a splitting field of f over F if (i) f splits in E and (ii) f does not
split in any proper subfield of E.

Lemma 44. Let E/F be an extension. Assume that f ∈ F [x] splits in E. Then there exists
a unique subfield K of E such that K is a splitting field of f over F .

Given σ : K → L be a homomorphism of fields, then we have a natural homomorphism
σ∗ : K[x]→ L[x] defined by

σ∗(a0 + a1x+ . . .+ anx
n) = σ(a0) + σ(a1)x+ · · ·+ σ(an)xn.

Theorem 45 (Kronecker). Let f ∈ F [x] be a nonconstant polynomial. Then there exists an
extension E/F and an α ∈ E such that f(α) = 0.

Corollary 46. Let f ∈ F [x]. Then there exists a splitting field of f over F .

Corollary 47. Let E/F and K/F be extensions. Let f ∈ F [x]. Assume that there exist
α ∈ E and β ∈ K such that f(α) = 0 = f(β). Then F (α) and F (β) are F -isomorphic.

Theorem 48. Let F1 and F2 be fields and let σ : F1 → F2 be an isomorphism. Let f ∈ F1[x].
Assume that E1 and E2 are splitting fields of f and σ∗(f) over F1 and F2 respectively. Then
there exist an isomorphism τ : E1 → E2 which extends σ.

Corollary 49. Any tow splitting fields of f ∈ F [x] are F -isomorphic.
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Corollary 50. Let E/F be a splitting field of some polynomial. Let α, β ∈ E. Then there
exists an F -isomorphism of E mapping α to β iff mα,F = mβ,F , that is, iff α and β have the
same minimal polynomial over F .

Ex. 51. Find the splitting fields (in C) of (i) (x4 − 4) ∈ Q[x] and (ii) x3 − 2 ∈ Q[x].

Definition 52. An extension E/F is said to be normal iff every irreducible polynomial in
F [x] that has a root in E splits over E, that is, any polynomial f ∈ F [x] that has a root in
E has all its roots in E.

Theorem 53. An extension E/F is a splitting field of some polynomial f ∈ F [x] if the
extension E/F is finite and normal.

4 Separable Extensions

Topics: Formal derivative, An irreducible polynomial over a field of characteristic 0 has only
simple roots, An irreducible polynomial f over a field of characteristic p has only multiple
roots iff its is of the form f(x) = g(xp). All roots of an irreducible polynomial have the same
multiplicity.

Separable polynomial, separable extension, perfect fields, fields of characteristic 0 and
finite fields are perfect.

Definition 54. Let f = a0 + a1x+ · · ·+ anx
n ∈ F [x]. Then the formal derivative Df ∈ F [x]

is defined by Df = a1 + 2a2x+ · · ·+ nanx
n−1. Note that D : F [x]→ F [x] is F -linear.

Definition 55. Let f ∈ F [x]. An element α ∈ E where E/F is an extension field, is said to
be repeated root if (x−α)2 is a divisor of f in E[x]. A root of f , which is not a repeated root
is called a simple root.

Proposition 56. A polynomial f ∈ F [x] has a repeated root in a splitting field over F iff
there exists a non-constant polynomial g ∈ F [x] that divides both f and its derivative Df in
F [x].

Proposition 57. An irreducible polynomial over a field of characteristic 0 has only simple
roots.
An irreducible polynomial f over a field of characteristic p has only multiple roots iff its is of
the form f(x) = g(xp).

Definition 58. An irreducible polynomial f ∈ F [x] is said to be separable over F iff f does
not have multiple roots in a splitting field of f .

A polynomial is said to be separable iff each of its irreducible factors is separable over F .

Corollary 59. An irreducible polynomial is separable iff Df = 0.

Definition 60. An algebraic extension E/F is said to be separable iff the minimal polynomial
of each element of E is separable over F .

Corollary 61. Let F be a field of characteristic 0. Then every polynomial in F [x] is separable
over F and hence every algebraic extension E/F is separable.
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5 Finite Fields

Lemma 62. Let F be a field of characteristic p > 0. Then (x+y)p = xp+yp and (xy)p = xpyp

for all x, y ∈ F . In particular, x 7→ xp is an injective field homomorphism of F to itself.

Theorem 63. A field E has pn elements iff it is a splitting field of the polynomial xp
n − x

over its prime subfield Zp.

Corollary 64. There exists a finite field GF (pn) of order pn for each prime p and n ∈ N.
Two finite fields are isomorphic iff they have the same number of elements.

The field GF (pn) is called the Galois field of order pn. Recall the Euler’s function ϕ(n)
defined on N: ϕ(n) is the number of integers m such that 0 < m < n such that m and n are
coprime.

Lemma 65. For any n ∈ N, we have
∑

d|n ϕ(d) = n.

Theorem 66. Let G be a finite subgroup of F ∗, the multiplicative group of a field F . Then
G is cyclic.

In particular, if F is a finite field, then F ∗ is cyclic.

Theorem 67 (Primitive Element Theorem). Let E/F be a finite separable extension. Then
E = F (α) for some α ∈ E. Thus, any finite separable extension is simple.

6 Galois Theory

Topics: Galois group, Galois Extensions, Fundamental Theorem of Galois Theory.

Definition 68. Let E/F be an extension. The set of all automorphisms σ of F that leave
F pointwise fixed is a group under composition and it is called the Galois group of E/F . We
let Gal (E/F ) denote this group.

Lemma 69. Let E/F be a finite separable extension. Then |Gal (E/F )| ≤ [E : F ], that is,
the order of the Galois group of E/F is at most the degree of E/F .

Definition 70. Let E be a field and let G be a group of automorphisms of E. Then the set

EG := {a ∈ E : σ(a) = afor all σ ∈ G}

is a subfield of E and is called the fixed field of G.

Theorem 71. Let E be a field and G be a group of automorphisms of E. Let F := EG be
the fixed field of G. Then

(i) E/F is algebraic,
(ii) for each α ∈ E, the minimal polynomial mα(x) = (x−α1) · · · (x−αk) where {ga1, . . . , αk}

is the G-orbit of α, that is, the set {σ(α) : σ ∈ G}.

Definition 72. An extension E/F is said to be a Galois extension if it is separable and
normal.
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Theorem 73. Let E be a field and G a group of automorphisms of E. Let F be the fixed
field of G. Then

(i) E/F is a Galois extension,
(ii) The Galois group of E/G is G,
(iii) We have [E : F ] = |Gal (E/)|.

Theorem 74. Let E/F be a finite extension and let Gal (E/F ) be the Galois group of E/F .
Then

(i) |Gal (E/F )| divides [E : F ],
(ii) |Gal (E/F )| = [E : F ] iff E/F is a Galois extension, in which case F is the fixed field

of Gal (E/F ).

Proposition 75. Let E,F,K be fields such that F ⊂ K ⊂ E. Assume that E/F is Galois.
Then E/K is Galois. If K/F is normal, then K/F is also Galois.

Let E/F be an extension and let K be an intermediate field between F and E, that is,
F ⊂ K ⊂ E. Let H stand for a subgroup of Gal (E/F ). Let K denote the set of intermediate
fields of E/F and H, the set of subgroups of G. Consider the maps

K 7→ Gal (E/K)

H 7→ EH .

The next theorem, the main result of Galois theory related these two maps.

Theorem 76 (Galois Correspondence). Let E/F be a Galois extension and let Gal (E/F ) be
its Galois group. The maps from K to H and vice-versa

K 7→ Gal (E/K)

H 7→ EH .

are inverses of each other.

Furthermore, the extension K/F is normal iff the corresponding subgroup Gal (E/K) is
normal. In such a case, we have Gal (K/F ) ' Gal (E/F )/Gal (E/K).
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