Outline of a Course in Field Theory

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

F stands for a field in the sequel.

1 Polynomial Ring F[x]

Topics: Reducible and irreducible; Various facts such as Euclidean domain, Irreducibility criterion such as Eisenstein's.

Theorem 1 (Division Algorithm). Let F be a field, and let $f \in [F[x]]$ be a nonzero polynomial with coefficients in F. Then given any polynomial $g \in F[x]$, there exist unique polynomials $q, r \in F[x]$ such that g = fq + r with either r = 0 or deg $r < \deg f$.

Corollary 2. The polynomial ring F[x] is a PID.

Definition 3. Let $f_1, \ldots, f_k \in F[x]$. They are said to be *coprime* if a polynomial q divides each f_j , then q is a constant.

Proposition 4. Let $f_j \in F[x]$, $1 \le j \le k$, be coprime. Then there exist $g_j \in F[x]$, $1, j \le n$, such that

 $f_1(x)g_1(x) + \dots + f_k(x)g_k(x) = 1.$

Definition 5. A non-constant polynomial $f \in F[x]$ is said to be *irreducible* over F if $q \in F[x]$ divides, then q is a constant.

Proposition 6. Let $f \in F[x]$ be irreducible. Let f divide gh where $g, h \in F[x]$. The either f divides g or f divides h.

Theorem 7. Let $f \in F[x]$ be irreducible. Then the quotient ring F[x]/(f) is a field.

Definition 8. A polynomial $f \in \mathbb{Z}[x]$ is said to be *primitive* if the GCD of the coefficients is 1. In particular, any monic polynomial is primitive.

Lemma 9 (Gauss Lemma). Let $f, g \in \mathbb{Z}[x]$ be primitive. Then the product fg is primitive.

Theorem 10. A polynomial $f \in \mathbb{Z}[x]$ is irreducible over \mathbb{Q} iff it is irreducible in the ring $\mathbb{Z}[x]$, that is, it cannot be expressed as a product of polynomials in $\mathbb{Z}[x]$ of lower degree.

Theorem 11 (Eisenstein's Irreducibility Criterion). Let $f = a_0 + a_1x + \cdots + a_nx^n \in \mathbb{Z}[x]$. Let $p \in \mathbb{N}$ be a prime. Assume that (i) p does not divide a_n , (ii) p divides a_j , $0 \le j \le n-1$, and (iii) p^2 does not divide a_0 . Then f is irreducible over \mathbb{Q} .

2 Extension of Fields

Topics: Algebraic element, minimal polynomial of an algebraic element, algebraic extension, degree of extension, finite extensions, tower theorem: [L : F] = [L : K][K : F], Kronecker's theorem, Adjunction of roots. $K(\alpha) = K[\alpha]$ if α is algebraic over K.

Definition 12. Let F be a field. An *extension* E/F is an imbedding of F into some field E, in other words, F is a 'subfield' of E, then we say that E is an extension of F and write it as E/F (read as extension field E over F).

Let E/F be an extension of F. Then E is a vector space over F in an obvious way. The *degree* of the extension, denoted by [E : F] is by definition $\dim_F E$, the dimension of the vector space E over the underlying field F.

The extension E/F is finite if [E:F] is finite.

Let E/F be an extension. Let $S \subset E$. Then F(S) denotes the smallest subfield of E containing F and S. We then say that F(S) is the field obtained from F by *adjoining* S.

If $S = \{\alpha_1, \ldots, \alpha_k\}$, we denote F(S) by $F(\alpha_1, \ldots, \alpha_k)$.

A field extension E/F is said to be *simple* if $E = F(\alpha)$ for some $\alpha \in E$.

Example 13. Let $F = \mathbb{Q}$ and $E = \mathbb{R}$ or $E = \mathbb{C}$. Then E/F is an extension, which are not finite extensions.

 \mathbb{C}/\mathbb{R} is a simple extension.

Example 14. Let *E* be any field and *F* its prime subfield. Then E/F is an extension. (It may happen E = F!)

Example 15. Let F be any field and E := F(x), the field of rational functions on F. Then E/F is a simple extension.

Example 16. Let $F := \mathbb{Q}$ and $E := \mathbb{Q} + \sqrt{2}\mathbb{Q} := \{a + b\sqrt{2} : a, b \in \mathbb{Q}\} \subset \mathbb{R}$. It is easy to check that E is a subfield of \mathbb{R} and that E/F is an extension. (What is the inverse of $a + b\sqrt{2}$?)

Theorem 17 (Tower Law). Let E/F and K/E be extension fields. Then the extension K/F is finite iff the extensions E/F and K/E are finite and we have [K:F] = [K:E][E:F].

Ex. 18. Show that a finite extension of prime degree is a simple extension.

Ex. 19. Find the degrees of the following extensions: (i) $E := \mathbb{Q}(\sqrt[3]{2}, i)$ and $F = \mathbb{Q}$, (ii) $\mathbb{Q}(\sqrt{2}, \sqrt{3})/Q$.

Ex. 20. Let E, K, F are fields such that $F \subset K \subset E$. Show that if [E : F] is finite then [E : K] and [K : F] are finite and that [E : F] = [E : K][K : F].

Ex. 21. Let p and q be distinct primes. Show that $\mathbb{Q}(\sqrt{p}, \sqrt{q})/Q$ is of degree 4. Using induction show that $[\mathbb{Q}(\sqrt{p_1}, \ldots, \sqrt{p_n}) : \mathbb{Q}] = 2^n$.

Ex. 22. Show that $\mathbb{Q}(\sqrt{2}, \sqrt{3}) = \mathbb{Q}(\sqrt{2} + \sqrt{3})$.

Ex. 23. This is an extension of the last exercise. Let Char $F \neq 2$. Assume that $E = F(\alpha, \beta)$ such that $\alpha^2 = a \in F$ and $\beta^2 = b \in F$ with $a \neq b$. Show that $E = F(\alpha + \beta)$.

Ex. 24 (A proposition). Let E/F be a simple extension, say, $E = F(\alpha)$. Then precisely, one of the following holds:

(i) There does not exist any nonzero-polynomial $f \in F[x]$ with $f(\alpha) = 0$.

(ii) There exists a unique monic polynomial $f \in F[x]$ of least degree with $f(\alpha) = 0$. *Hint:* Consider the kernel of the ring homomorphism $f \mapsto f(\alpha)$ from F[x] to $E; F(\alpha)$.

Definition 25. Let E/F be an extension and $\alpha \in E$. Then α is said to be *algebraic* over F if there exists $0 \neq f \in F[x]$ such that $f(\alpha) = 0$. The extension E/F is *algebraic* if each element $\alpha \in E$ is algebraic over F.

An element $\alpha \in E$ is *transcendental* over F if it is not algebraic over F.

Proposition 26. Any finite extension E/F is algebraic.

Proposition 27 (Minimal polynomial of an algebraic element). Let E/F be an extension and $\alpha \in E$ be algebraic over F. Then there exists a unique irreducible monic polynomial $m_{\alpha} = m_{\alpha,F} \in F[x]$ with the following property: $f \in F[x]$ is such that $f(\alpha) = 0$, iff m_{α} divides f.

Definition 28. The polynomial m_{α} of the last proposition is said to be the *minimal polynomial* of α over F.

Ex. 29. Consider the extension \mathbb{C}/\mathbb{Q} . Find the minimal polynomial of the following elements: (i) $\sqrt{2}$, (ii) $\sqrt{-1}$, (iii) $\sqrt{2} + \sqrt{3}$, (iv) ζ , a primitive root of unity where p is a prime and (v) ζ_6 , a primitive sixth root of unity.

Ex. 30. Find the minimal polynomial

Ex. 31. Let E/F be an extension and let $\alpha \in E$ be algebraic over F. Show that the subfield $F(\alpha) = \{p(\alpha) : p \in F[x]\}.$

Theorem 32. A simple extension $F(\alpha)/F$ is finite iff α is algebraic over F. Also, in such a case, we have $[F(\alpha):F] = \deg m_{\alpha}$.

Corollary 33. A field extension E/F is finite iff there exist $\alpha_1, \ldots, \alpha_k \in E$ such that $E = F(\alpha_1, \ldots, \alpha_k)$ and each α_i is algebraic over F.

Ex. 34. Let E/F be an extension with $\alpha \in E$. Show that the following are equivalent: (i) α is algebraic over F.

- (ii) The evaluation map $p \mapsto p(\alpha)$ from F[x] to E has nonzero kernel.
- (iii) $F(\alpha)/F$ is a finite extension.

Ex. 35. Let E/F and L/E be algebraic extensions. Show that L/F is an algebraic extension.

Ex. 36. Let E/F be an extension, $\alpha_j \in E$, $1 \leq j \leq n$ be algebraic over F. Show that $F(\alpha_1, \ldots, \alpha_n)/F$ is a finite extension.

Ex. 37. Let E/F be an extension. Assume that $\alpha, \beta \in E$ are algebraic over F. Show that $\alpha \pm \beta$, $\alpha\beta$ and α/β (if $\beta \neq 0$) are algebraic over F. *Hint:* Last exercise.

Ex. 38. Let E/F be an extension. Let \overline{F} be the set of all elements of E which are algebraic over F. Show that \overline{F} is a subfield of F. (\overline{F} is called the *algebraic closure* of F in E.)

Notation: $\overline{\mathbb{Q}}$ stands for the algebraic closure of \mathbb{Q} in \mathbb{C} . Show that $\overline{\mathbb{Q}}$ is not a finite extension of \mathbb{Q} .

Ex. 39. Let E/F be a finite extension. Assume that for any two subfields K_1, K_2 of E either $K_1 \subset K_2$ or $K_2 \subset K_1$. Show that E/F is a simple extension.

Ex. 40. Let $E = F(\alpha)$ be algebraic over F with $[F(\alpha) : F]$ being odd. Show that $F(\alpha) = F(\alpha^2)$.

Definition 41. Let E/F and K/F be two extensions of F. Then an F-homomorphism θ is a field homomorphism $\theta: E \to K$ such that $\theta(a) = a$ for all $a \in F$.

An F-automorphism of E/F is an F-isomorphism of E onto itself.

The extensions E/F and K/F are said to be K-isomorphic if there exists an isomorphism $\theta: E \to K$ which is also an F-homomorphism.

Ex. 42. Let E/F be an extension such that $E = F(\alpha_1, \ldots, \alpha_k)$. If an *F*-automorphism θ of *E* leaves each of α_j , $1 \le j \le k$ fixed, then show that θ is the identity. Hence deduce that any two *F*-automorphism that agree on α_j 's must be the same.

3 Splitting Fields and Normal Extensions

Topics: Definition of a splitting field of a polynomial, uniqueness, normal extensions, elements conjugate over a field F.

Definition 43. Let $f \in F[x]$ and E/F be an extension. We say that f splits over E if either f is a constant polynomial or if there exist $\alpha_1, \ldots, \alpha_n \in E$ such that $f = c(x - \alpha_1) \cdots (x - \alpha_n)$ where $c \in F$ is the leading coefficient of f.

The field E is said to be a *splitting field* of f over F if (i) f splits in E and (ii) f does not split in any proper subfield of E.

Lemma 44. Let E/F be an extension. Assume that $f \in F[x]$ splits in E. Then there exists a unique subfield K of E such that K is a splitting field of f over F.

Given $\sigma: K \to L$ be a homomorphism of fields, then we have a natural homomorphism $\sigma_*: K[x] \to L[x]$ defined by

 $\sigma_*(a_0 + a_1x + \ldots + a_nx^n) = \sigma(a_0) + \sigma(a_1)x + \cdots + \sigma(a_n)x^n.$

Theorem 45 (Kronecker). Let $f \in F[x]$ be a nonconstant polynomial. Then there exists an extension E/F and an $\alpha \in E$ such that $f(\alpha) = 0$.

Corollary 46. Let $f \in F[x]$. Then there exists a splitting field of f over F.

Corollary 47. Let E/F and K/F be extensions. Let $f \in F[x]$. Assume that there exist $\alpha \in E$ and $\beta \in K$ such that $f(\alpha) = 0 = f(\beta)$. Then $F(\alpha)$ and $F(\beta)$ are F-isomorphic.

Theorem 48. Let F_1 and F_2 be fields and let $\sigma: F_1 \to F_2$ be an isomorphism. Let $f \in F_1[x]$. Assume that E_1 and E_2 are splitting fields of f and $\sigma_*(f)$ over F_1 and F_2 respectively. Then there exist an isomorphism $\tau: E_1 \to E_2$ which extends σ .

Corollary 49. Any tow splitting fields of $f \in F[x]$ are *F*-isomorphic.

Corollary 50. Let E/F be a splitting field of some polynomial. Let $\alpha, \beta \in E$. Then there exists an F-isomorphism of E mapping α to β iff $m_{\alpha,F} = m_{\beta,F}$, that is, iff α and β have the same minimal polynomial over F.

Ex. 51. Find the splitting fields (in \mathbb{C}) of (i) $(x^4 - 4) \in \mathbb{Q}[x]$ and (ii) $x^3 - 2 \in \mathbb{Q}[x]$.

Definition 52. An extension E/F is said to be *normal* iff every irreducible polynomial in F[x] that has a root in E splits over E, that is, any polynomial $f \in F[x]$ that has a root in E has all its roots in E.

Theorem 53. An extension E/F is a splitting field of some polynomial $f \in F[x]$ if the extension E/F is finite and normal.

4 Separable Extensions

Topics: Formal derivative, An irreducible polynomial over a field of characteristic 0 has only simple roots, An irreducible polynomial f over a field of characteristic p has only multiple roots iff its is of the form $f(x) = g(x^p)$. All roots of an irreducible polynomial have the same multiplicity.

Separable polynomial, separable extension, perfect fields, fields of characteristic 0 and finite fields are perfect.

Definition 54. Let $f = a_0 + a_1x + \dots + a_nx^n \in F[x]$. Then the formal derivative $Df \in F[x]$ is defined by $Df = a_1 + 2a_2x + \dots + na_nx^{n-1}$. Note that $D: F[x] \to F[x]$ is F-linear.

Definition 55. Let $f \in F[x]$. An element $\alpha \in E$ where E/F is an extension field, is said to be *repeated root* if $(x - \alpha)^2$ is a divisor of f in E[x]. A root of f, which is not a repeated root is called a simple root.

Proposition 56. A polynomial $f \in F[x]$ has a repeated root in a splitting field over F iff there exists a non-constant polynomial $g \in F[x]$ that divides both f and its derivative Df in F[x].

Proposition 57. An irreducible polynomial over a field of characteristic 0 has only simple roots.

An irreducible polynomial f over a field of characteristic p has only multiple roots iff its is of the form $f(x) = g(x^p)$.

Definition 58. An irreducible polynomial $f \in F[x]$ is said to be *separable* over F iff f does not have multiple roots in a splitting field of f.

A polynomial is said to be separable iff each of its irreducible factors is separable over F.

Corollary 59. An irreducible polynomial is separable iff Df = 0.

Definition 60. An algebraic extension E/F is said to be separable iff the minimal polynomial of each element of E is separable over F.

Corollary 61. Let F be a field of characteristic 0. Then every polynomial in F[x] is separable over F and hence every algebraic extension E/F is separable.

5 Finite Fields

Lemma 62. Let F be a field of characteristic p > 0. Then $(x+y)^p = x^p + y^p$ and $(xy)^p = x^p y^p$ for all $x, y \in F$. In particular, $x \mapsto x^p$ is an injective field homomorphism of F to itself.

Theorem 63. A field E has p^n elements iff it is a splitting field of the polynomial $x^{p^n} - x$ over its prime subfield \mathbb{Z}_p .

Corollary 64. There exists a finite field $GF(p^n)$ of order p^n for each prime p and $n \in \mathbb{N}$. Two finite fields are isomorphic iff they have the same number of elements.

The field $GF(p^n)$ is called the Galois field of order p^n . Recall the Euler's function $\varphi(n)$ defined on \mathbb{N} : $\varphi(n)$ is the number of integers m such that 0 < m < n such that m and n are coprime.

Lemma 65. For any $n \in \mathbb{N}$, we have $\sum_{d|n} \varphi(d) = n$.

Theorem 66. Let G be a finite subgroup of F^* , the multiplicative group of a field F. Then G is cyclic.

In particular, if F is a finite field, then F^* is cyclic.

Theorem 67 (Primitive Element Theorem). Let E/F be a finite separable extension. Then $E = F(\alpha)$ for some $\alpha \in E$. Thus, any finite separable extension is simple.

6 Galois Theory

Topics: Galois group, Galois Extensions, Fundamental Theorem of Galois Theory.

Definition 68. Let E/F be an extension. The set of all automorphisms σ of F that leave F pointwise fixed is a group under composition and it is called the Galois group of E/F. We let Gal (E/F) denote this group.

Lemma 69. Let E/F be a finite separable extension. Then $|\text{Gal}(E/F)| \leq [E:F]$, that is, the order of the Galois group of E/F is at most the degree of E/F.

Definition 70. Let E be a field and let G be a group of automorphisms of E. Then the set

$$E^G := \{ a \in E : \sigma(a) = a \text{ for all } \sigma \in G \}$$

is a subfield of E and is called the fixed field of G.

Theorem 71. Let E be a field and G be a group of automorphisms of E. Let $F := E^G$ be the fixed field of G. Then

(i) E/F is algebraic,

(ii) for each $\alpha \in E$, the minimal polynomial $m_{\alpha}(x) = (x-\alpha_1)\cdots(x-\alpha_k)$ where $\{ga_1,\ldots,\alpha_k\}$ is the G-orbit of α , that is, the set $\{\sigma(\alpha) : \sigma \in G\}$.

Definition 72. An extension E/F is said to be a Galois extension if it is separable and normal.

Theorem 73. Let E be a field and G a group of automorphisms of E. Let F be the fixed field of G. Then

(i) E/F is a Galois extension,

(ii) The Galois group of E/G is G,

(iii) We have [E:F] = |Gal(E/)|.

Theorem 74. Let E/F be a finite extension and let Gal(E/F) be the Galois group of E/F. Then

(i) |Gal(E/F)| divides [E:F],

(ii) |Gal(E/F)| = [E:F] iff E/F is a Galois extension, in which case F is the fixed field of Gal(E/F).

Proposition 75. Let E, F, K be fields such that $F \subset K \subset E$. Assume that E/F is Galois. Then E/K is Galois. If K/F is normal, then K/F is also Galois.

Let E/F be an extension and let K be an intermediate field between F and E, that is, $F \subset K \subset E$. Let H stand for a subgroup of $\operatorname{Gal}(E/F)$. Let \mathcal{K} denote the set of intermediate fields of E/F and \mathcal{H} , the set of subgroups of G. Consider the maps

$$\begin{array}{rccc} K & \mapsto & \operatorname{Gal}\left(E/K\right) \\ H & \mapsto & E^{H}. \end{array}$$

The next theorem, the main result of Galois theory related these two maps.

Theorem 76 (Galois Correspondence). Let E/F be a Galois extension and let Gal(E/F) be its Galois group. The maps from \mathcal{K} to \mathcal{H} and vice-versa

$$\begin{array}{rcl}
K & \mapsto & \operatorname{Gal}\left(E/K\right) \\
H & \mapsto & E^{H}.
\end{array}$$

are inverses of each other.

Furthermore, the extension K/F is normal iff the corresponding subgroup $\operatorname{Gal}(E/K)$ is normal. In such a case, we have $\operatorname{Gal}(K/F) \simeq \operatorname{Gal}(E/F)/\operatorname{Gal}(E/K)$.