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F stands for a field in the sequel.

1 Polynomial Ring F[z]

Topics: Reducible and irreducible; Various facts such as Euclidean domain, Irreducibility
criterion such as Eisenstein’s.

Theorem 1 (Division Algorithm). Let F' be a field, and let f € [F[z] be a nonzero polynomial
with coefficients in F. Then given any polynomial g € Fx], there exist unique polynomials
q,r € Flx] such that g = fq + r with either r =0 or degr < deg f.

Corollary 2. The polynomial ring F[z] is a PID.

Definition 3. Let fi,..., fx € Fz]. They are said to be coprime if a polynomial ¢ divides
each f;, then ¢ is a constant.

Proposition 4. Let f; € Flz]|, 1 < j <k, be coprime. Then there exist g; € Flx], 1'j < n,
such that
fi(@)gi(x) + -+ fu(z)gr(z) = 1.

Definition 5. A non-constant polynomial f € Flz] is said to be irreducible over F if
q € Fz] divides, then ¢ is a constant.

Proposition 6. Let f € Flx| be irreducible. Let f divide gh where g,h € Fx]. The either f
divides g or f divides h.

Theorem 7. Let f € F[z] be irreducible. Then the quotient ring F[x]/(f) is a field.

Definition 8. A polynomial f € Z[z] is said to be primitive if the GCD of the coefficients is
1. In particular, any monic polynomial is primitive.

Lemma 9 (Gauss Lemma). Let f,g € Z[x] be primitive. Then the product fg is primitive.

Theorem 10. A polynomial f € Z[z] is irreducible over Q iff it is irreducible in the ring
Z[x], that is, it cannot be expressed as a product of polynomials in Z[x] of lower degree.

Theorem 11 (Eisenstein’s Irreducibilty Criterion). Let f = ag + a1z + - - + apa™ € Z[z].
Let p € N be a prime. Assume that (i) p does not divide a,,, (it) p divides a;, 0 < j<mn—1,
and (iii) p? does not divide ag. Then f is irreducible over Q.



2 Extension of Fields

Topics: Algebraic element, minimal polynomial of an algebraic element, algebraic extension,
degree of extension, finite extensions, tower theorem: [L : F| = [L : K|[K : F|, Kronecker’s
theorem, Adjunction of roots. K(«a) = KJa] if « is algebraic over K.

Definition 12. Let F be a field. An extension E/F is an imbedding of F' into some field F,
in other words, F' is a ‘subfield’ of F/, then we say that E is an extenion of F' and write it as
E/F (read as extension field E over F)).

Let E/F be an extension of F'. Then F is a vector space over F' in an obvious way. The
degree of the extension, denoted by [E : F| is by definition dimp F, the dimension of the
vector space E over the underlying field F.

The extension E/F is finite if [E : F|] is finite.

Let E/F be an extension. Let S C E. Then F(S) denotes the smallest subfield of F
containing F' and S. We then say that F'(S) is the field obtained from F' by adjoining S.

If S={ai,...,ax}, we denote F(S) by F(ai,...,ax).
A field extension E/F is said to be simple if E = F(«) for some «a € E.

Example 13. Let FF = Q and F = R or E = C. Then E/F is an extension, which are not
finite extensions.

C/R is a simple extension.

Example 14. Let E be any field and F its prime subfield. Then E/F is an extension. (It
may happen F = F!)

Example 15. Let F be any field and E := F(z), the field of rational functions on F'. Then
E/F is a simple extension.

Example 16. Let F := Q and F := Q+v2Q := {a+bv2: a,b € Q} C R. It is easy to check
that E is a subfield of R and that E/F is an extension. (What is the inverse of a + bv/2?)

Theorem 17 (Tower Law). Let E/F and K/E be extension fields. Then the extension K/F
is finite iff the extensions E/F and K/E are finite and we have [K : F| = [K : E|[E : F].

Ex. 18. Show that a finite extension of prime degree is a simple extension.

Ex. 19. Find the degrees of the following extensions: (i) E := Q(+/2,i) and F = Q, (ii)
Q(V2,v3)/Q.

Ex. 20. Let E, K, F are fields such that /' C K C E. Show that if [E : F] is finite then
[E: K] and [K : F] are finite and that [E : F| = [F : K][K : F].

Ex. 21. Let p and ¢ be distinct primes. Show that Q(/p,/q)/Q is of degree 4. Using
induction show that [Q(\/p1,...,/Pn) : Q] =2".

Ex. 22. Show that Q(v/2,v3) = Q(v2 + V/3).

Ex. 23. This is an extension of the last exercise. Let Char F' # 2. Assume that F = F(«, 3)
such that o> =a € F and 82 = b € F with a # b. Show that E = F(a + ).



Ex. 24 (A proposition). Let E/F be a simple extension, say, £ = F'(«). Then precisely, one
of the following holds:

(i) There does not exist any nonzero-polynomial f € F[x] with f(a) = 0.

(ii) There exists a unique monic polynomial f € F[x] of least degree with f(«a) = 0. Hint:
Consider the kernel of the ring homomorphism f — f(«) from F[z] to E; F(«).

Definition 25. Let E/F be an extension and a € E. Then « is said to be algebraic over
F' if there exists 0 # f € Flz] such that f(a) = 0. The extension E/F is algebraic if each
element o € F is algebraic over F.

An element o € E is transcendental over F if it is not algebraic over F.
Proposition 26. Any finite extension E/F is algebraic.

Proposition 27 (Minimal polynomial of an algebraic element). Let E/F be an extension
and a € E be algebraic over F. Then there exists a unique irreducible monic polynomial
Mo = Mq r € Flx] with the following property: f € F[z] is such that f(o) = 0, iff mq divides
f-

Definition 28. The polynomial m, of the last proposition is said to be the minimal polyno-
mial of o over F.

Ex. 29. Consider the extension C/Q. Find the minimal polynomial of the following elements:
(i) V2, (i) v—1, (iii) V24 V3, (iv) ¢, a primitive root of unity where p is a prime and (v)

(6, a primitive sixth root of unity.
Ex. 30. Find the minimal polynomial

Ex. 31. Let E/F be an extension and let a € E be algebraic over F. Show that the subfield
F(a) ={p(a) :p € Flzl}.

Theorem 32. A simple extension F(«)/F is finite iff « is algebraic over F'. Also, in such a
case, we have [F(a) : F] = degmy,.

Corollary 33. A field extension E/F is finite iff there exist v, ...,a € E such that E =
F(ai,...,0) and each o is algebraic over F.

Ex. 34. Let E/F be an extension with o € E. Show that the following are equivalent:
(i) « is algebraic over F'.
(ii) The evaluation map p — p(«) from F[x] to E has nonzero kernel.
(iii) F(«)/F is a finite extension.

Ex. 35. Let E/F and L/E be algebraic extensions. Show that L/F is an algebraic extension.

Ex. 36. Let E/F be an extension, aj € E, 1 < j < n be algebraic over F'. Show that
F(aq,...,ap)/F is a finite extension.

Ex. 37. Let E/F be an extension. Assume that «, 8 € E are algebraic over F. Show that
a+ B, af and o/f (if B # 0) are algebraic over F. Hint: Last exercise.

Ex. 38. Let E/F be an extension. Let Ebe the set of all elements of E' which are algebraic
over F. Show that Fis a subfield of F'. (F is called the algebraic closure of F in E.)

Notation: Q stands for the algebraic closure of Q in C. Show that Q is not a finite
extension of Q.



Ex. 39. Let E/F be a finite extension. Assume that for any two subfields K1, K of E either
K C Ky or K9 C K;. Show that E/F is a simple extension.

Ex. 40. Let E = F(«) be algebraic over F' with [F(«) : F] being odd. Show that F(«) =
F(a?).

Definition 41. Let E/F and K/F be two extensions of F. Then an F-homomorphism 6 is
a field homomorphism 6: £ — K such that 6(a) = a for all a € F.

An F-automorphism of E/F is an F-isomorphism of E onto itself.

The extensions E/F and K/F are said to be K-isomorphic if there exists an isomorphism
0: E — K which is also an F-homomorphism.

Ex. 42. Let E/F be an extension such that F = F(a1,...,a). If an F-automorphism 6 of
E leaves each of o, 1 < j <k fixed, then show that 6 is the identity. Hence deduce that any
two F-automorphism that agree on a;’s must be the same.

3 Splitting Fields and Normal Extensions

Topics: Definition of a splitting field of a polynomial, uniqueness, normal extensions, ele-
ments conjugate over a field F.

Definition 43. Let f € F[z| and E/F be an extension. We say that f splits over E if either
f is a constant polynomial or if there exist aq,...,a, € E such that f =c(x—a1) -+ (z—ay)
where ¢ € F' is the leading coefficient of f.

The field E is said to be a splitting field of f over F' if (i) f splits in E and (ii) f does not
split in any proper subfield of E.

Lemma 44. Let E/F be an extension. Assume that f € Fx] splits in E. Then there exists
a unique subfield K of E such that K is a splitting field of f over F.

Given 0: K — L be a homomorphism of fields, then we have a natural homomorphism
o.: K[z] — L[z] defined by

o«(ag + a1z + ...+ apz"™) = o(ag) + o(a))x + -+ + o(ap)z".

Theorem 45 (Kronecker). Let f € Flx| be a nonconstant polynomial. Then there exists an
extension E/F and an o € E such that f(a) = 0.

Corollary 46. Let f € F[z]. Then there exists a splitting field of f over F.

Corollary 47. Let E/F and K/F be extensions. Let f € F[x]. Assume that there exist
a € E and B € K such that f(a) =0 = f(5). Then F(a) and F(B) are F-isomorphic.

Theorem 48. Let Fy and F; be fields and let o: Fy — F5 be an isomorphism. Let f € Fy[z].
Assume that Ey and Ey are splitting fields of f and o.(f) over Fy and Fy respectively. Then
there exist an isomorphism 7: E1 — FEo which extends o.

Corollary 49. Any tow splitting fields of f € F[x] are F-isomorphic.



Corollary 50. Let E/F be a splitting field of some polynomial. Let o, € E. Then there
exists an F-isomorphism of E mapping o to 8 iff ma r = mg r, that is, iff o and 8 have the
same minimal polynomial over F.

Ex. 51. Find the splitting fields (in C) of (i) (z* — 4) € Q[z] and (ii) 2 — 2 € Q[x].

Definition 52. An extension E/F is said to be normal iff every irreducible polynomial in
F[z] that has a root in E splits over E, that is, any polynomial f € F[z] that has a root in
FE has all its roots in E.

Theorem 53. An extension E/F is a splitting field of some polynomial f € Fl[z] if the
extension E/F is finite and normal.

4 Separable Extensions

Topics: Formal derivative, An irreducible polynomial over a field of characteristic 0 has only
simple roots, An irreducible polynomial f over a field of characteristic p has only multiple
roots iff its is of the form f(z) = g(«P). All roots of an irreducible polynomial have the same
multiplicity.

Separable polynomial, separable extension, perfect fields, fields of characteristic 0 and
finite fields are perfect.

Definition 54. Let f = ag+ajz+ -+ ana™ € F[z]. Then the formal derivative D f € F|x]
is defined by Df = aj + 2asx + - - - + na,a™~!. Note that D: F[z] — F|[z] is F-linear.

Definition 55. Let f € F[z]. An element o € E where E/F is an extension field, is said to
be repeated root if (x — a)? is a divisor of f in E[z]. A root of f, which is not a repeated root
is called a simple root.

Proposition 56. A polynomial f € F|x] has a repeated root in a splitting field over F iff
there exists a non-constant polynomial g € F[z] that divides both f and its derivative Df in

Proposition 57. An irreducible polynomial over a field of characteristic 0 has only simple
T001S.
An irreducible polynomial f over a field of characteristic p has only multiple roots iff its is of

the form f(x) = g(xP).

Definition 58. An irreducible polynomial f € F[z] is said to be separable over F' iff f does
not have multiple roots in a splitting field of f.

A polynomial is said to be separable iff each of its irreducible factors is separable over F.
Corollary 59. An irreducible polynomial is separable iff Df = 0.

Definition 60. An algebraic extension E/F is said to be separable iff the minimal polynomial
of each element of F' is separable over F.

Corollary 61. Let F' be a field of characteristic 0. Then every polynomial in F|x] is separable
over F and hence every algebraic extension E/F is separable.



5 Finite Fields

Lemma 62. Let F be a field of characteristic p > 0. Then (z+y)P = 2P+yP and (zvy)P = xPyP
for all x,y € F. In particular, x — xP is an injective field homomorphism of F' to itself.

Theorem 63. A field E has p" elements iff it is a splitting field of the polynomial zP" — x
over its prime subfield Zjp.

Corollary 64. There exists a finite field GF(p™) of order p" for each prime p and n € N.
Two finite fields are isomorphic iff they have the same number of elements.

The field GF(p") is called the Galois field of order p”. Recall the Euler’s function ¢(n)
defined on N: ¢(n) is the number of integers m such that 0 < m < n such that m and n are
coprime.

Lemma 65. For any n € N, we have }_;,, ¢(d) = n.

Theorem 66. Let G be a finite subgroup of F*, the multiplicative group of a field F'. Then
G s cyclic.

In particular, if F is a finite field, then F* is cyclic.

Theorem 67 (Primitive Element Theorem). Let E/F be a finite separable extension. Then
E = F(«) for some a € E. Thus, any finite separable extension is simple.

6 Galois Theory

Topics: Galois group, Galois Extensions, Fundamental Theorem of Galois Theory.

Definition 68. Let E/F be an extension. The set of all automorphisms o of F' that leave
F pointwise fixed is a group under composition and it is called the Galois group of E/F. We
let Gal (E/F) denote this group.

Lemma 69. Let E/F be a finite separable extension. Then |Gal(E/F)| < [E : F|, that is,
the order of the Galois group of E/F is at most the degree of E/F.

Definition 70. Let F be a field and let G be a group of automorphisms of E. Then the set
EY:={a € E:o(a) = afor all 0 € G}
is a subfield of F and is called the fixed field of G.

Theorem 71. Let E be a field and G be a group of automorphisms of E. Let F := EY be
the fixed field of G. Then

(i) E/F is algebraic,

(ii) for each o € E, the minimal polynomial my(z) = (z—a) - - - (x—ay) where {ga, ..., o}
is the G-orbit of «, that is, the set {o(«): 0 € G}.

Definition 72. An extension E/F is said to be a Galois extension if it is separable and
normal.



Theorem 73. Let E be a field and G a group of automorphisms of E. Let F' be the fixed
field of G. Then

(i) E/F is a Galois extension,

(ii) The Galois group of E/G is G,

(iii) We have [E : F] = |Gal (E/)|.
Theorem 74. Let E/F be a finite extension and let Gal (E/F) be the Galois group of E/F .
Then

(i) |Gal (E/F)| divides [E : F],

(i) |Gal (E/F)| = [E : F] iff E/F is a Galois extension, in which case F' is the fized field
of Gal (E/F).

Proposition 75. Let E, F, K be fields such that F C K C E. Assume that E/F is Galois.
Then E/K is Galois. If K/F is normal, then K/F is also Galois.

Let E/F be an extension and let K be an intermediate field between F' and E, that is,
F C K C E. Let H stand for a subgroup of Gal (E//F). Let K denote the set of intermediate
fields of E/F and H, the set of subgroups of G. Consider the maps

K — Gal(E/K)
H — Ef,

The next theorem, the main result of Galois theory related these two maps.

Theorem 76 (Galois Correspondence). Let E/F be a Galois extension and let Gal (E/F) be
its Galois group. The maps from K to H and vice-versa

K — Gal(E/K)
H — Ef
are inverses of each other.

Furthermore, the extension K/F is normal iff the corresponding subgroup Gal (E/K) is
normal. In such a case, we have Gal (K/F) ~ Gal (E/F)/Gal (E/K).



