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F stands for a field in the sequel.

1 Polynomial Ring F [x]

Topics: Reducible and irreducible; Various facts such as Euclidean domain, Irreducibility
criterion such as Eisenstein’s.

Theorem 1.1 (Division Algorithm). Let F be a field, and let f ∈ [F [x] be a nonzero polyno-
mial with coefficients in F . Then given any polynomial g ∈ F [x], there exist unique polyno-
mials q, r ∈ F [x] such that g = fq + r with either r = 0 or deg r < deg f .

Corollary 1.2. The polynomial ring F [x] is a PID.

Definition 1.3. Let f1, . . . , fk ∈ F [x]. They are said to be coprime or relatively prime if a
polynomial q divides each fj , then q is a constant.

Proposition 1.4. Let fj ∈ F [x], 1 ≤ j ≤ k, be coprime. Then there exist gj ∈ F [x],
1 ≤ j ≤ n, such that

f1(x)g1(x) + · · ·+ fk(x)gk(x) = 1.

Definition 1.5. A non-constant polynomial f ∈ F [x] is said to be irreducible over F if
q ∈ F [x] divides, then q is a constant.

Proposition 1.6. Let f ∈ F [x] be irreducible. Let f divide gh where g, h ∈ F [x]. The either
f divides g or f divides h.

Theorem 1.7. Let f ∈ F [x] be irreducible. Then the quotient ring F [x]/(f) is a field.

Theorem 1.8 (Gauss Lemma). A polynomial f ∈ Z[x] is irreducible over Q iff it is irreducible
in the ring Z[x].
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Proof. Assume f(x) = g(x)h(x) ∈ Q[x] with deg g < deg f and deg h < deg f . Choose m ∈ Z
such that mg ∈ Z[x]. Hence f(x) = (m · g(x))

(
1
m · h(x)

)
. Let c be the GCD of all the

coefficients in m · g(x). We have

f(x) =
(m
c
· g(x)

)( c
m
· h(x)

)
= G(x) ·H(x), say.

We show that H has integer coefficients. Let n be the smallest natural number such that
n ·H(x) ∈ Z[x]. We claim n = 1. If not, let p be any prime dividing n. Let π : Z[x]→ Zp[x]
be the standard homomorphism. Then π(n · f(x)) = π(G(x) · n ·H(x)) = 0. Since the GCD
of coefficients of G(x) is 1, at least one of its coefficients is not divisible by p and hence
π(G(x)) 6= 0. Since Zp[z] is an integral domain, it follows that π(n · H(x)) = 0. In other
words, all the coefficients of n ·H(x) are divisible by p. This means that n

pH(x) ∈ Z[x]. This
contradicts the minimality of n.

Theorem 1.9 (Eisenstein’s Irreducibility Criterion). Let f = a0 + a1x + · · · + anx
n ∈ Z[x].

Let p ∈ N be a prime. Assume that (i) p does not divide an, (ii) p divides aj, 0 ≤ j ≤ n− 1,
and (iii) p2 does not divide a0. Then f is irreducible over Q.

Proof. Let, if possible, f(x) = (b0 + b1x · · ·+ brx
s)(c0 + c1x+ · · ·+ csx

s. Look at a0 = b0c0.
Since p divides a0 but not p2 says that p divides exactly one of b0 and c0. Assume that p
divides b0 and not c0. Again look at a1 = b0c1 + b1c0. Since p divides a1, and b0, it follows
that p divides b1c0. Since p does not divide c0, it follows that p divides b1. Proceed by
induction.

Ex. 1.10. Extend the last theorem as follows. Let R be a ring, and P a prime ideal of R.
Let f(x) = a0 + a1x + · · · + anx

n ∈ R[x]. Assume that (i) ai ∈ P for 0 ≤ i < n, (ii) an /∈ P
and (iii) a0 /∈ P 2, the product ideal. Then f is irreducible in R[x].

Ex. 1.11. Show that the polynomials (i) x2 + 8x − 2 and (ii) x2 + 6x + 12 are irreducible
over Q. Are they irreducible over R? Over C?

Ex. 1.12. This observation is needed when we want to transform a given polynomial into
one to which Eisenstein criterion may be applied.

Let a ∈ R∗ and b ∈ R, an integral domain. Then f(x) s irreducible in R[x] iff g(x) :=
f(ax+ b) is irreducible in R[x].

Apply the transformation x 7→ x + 1 to establish th irreducibility of f(x) = x4 + 4x3 +
10x2 + 12x+ 7 ∈ Z[x].

Ex. 1.13. Φp(x) is irreducible. The key observation is that Φp(x) = xp−1
x−1 . Now look at

g(x) = Φp(x + 1) =
∑p−1

r=0

(
p
r

)
xr. Eisenstein criterion applied to g yields the irreducibility of

g.

Ex. 1.14. Φp2(x) := xp
2−1

xp−1 is irreducible. Apply the trick of the last exercise.

Ex. 1.15. Let R be an integral domain. Then f(x) = a0 + · · · + anx
n with a0 6= 0 is

irreducible over R iff the reciprocal polynomial f̃(x) defined by f̃(x) = xnf(1/x) = a0x
n +

a1x
n−1 + · · ·+ an−1x+ an is irreducible over R.
Use this observation to prove the irreducibility of the following polynomials: (i) 2x4 +

4x2 + 4x+ 1 and (ii) 5x7 + 4.
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Theorem 1.16 (Rational Roots Theorem). Let f(x) = anx
n + · · ·+ a0 ∈ Z[x]. Assume that

ana0 6= 0. If r/s ∈ Q (in lowest terms) is a root of f(x), then r|a0 and s|an.

Proof. Look at snf(r/s). We have

0 = snf(r/s) = anr
n + an−1(r/s)

n−1s+ · · ·+ a1rs
n−1 + a0s

n.

RHS is divisible by r and hence r|a0 as all the other terms on LHS are divisible by r. RHS
is divisible by s and hence s|an, as all other terms on LHS are divisible by s.

Corollary 1.17. If f(x) ∈ Z[x] is monic, then any rational root must be an integer dividing
a0.

Ex. 1.18. Show that 3 is the only rational root of x3 − 2x2 − 2x− 3.

Ex. 1.19. Show that f(x) = x5 + 9x3 + 2 has rational roots. Show that it has only one ral
root in (−1, 0).

Ex. 1.20. Show that f(x) = x3 + ax2 + bx + 1 ∈ Z[x] is reducible iff either a = b or
a+ b+ 2 = 0.

Ex. 1.21. Show that x4 +2x2 +1 ∈ Q[x] is irreducible. Hint: Use the rational roots theorem
to show that it has no linear factors. Use Gauss lemma to show that if it were reducible, then
the irreducible factors are quadratic, say, f(x) = (x2 + ax + 1)(x2 + bx + 1). Compare the
coefficients to arrive at equations which have no integer solutions.

Ex. 1.22. Show that f(x) = x2 − 8x− 2 is irreducible over Q.

Ex. 1.23. Show that f(x) = x3 + 3x2 − 8 is irreducible over Q.

Ex. 1.24. Show that x4 − 10x2 + 1 is irreducible in Q[x].

Ex. 1.25. Show that the polynomial x2 + x+ 1 is irreducible in Z3[x].

Ex. 1.26. Show that f(x) = 4x3 − 3x + 1
2 ∈ Q[x] is irreducible in two ways: one using the

rational root theorem and the other applying Eisenstein criterion to f(1+x2 ).
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2 Extension of Fields

Topics: Algebraic element, minimal polynomial of an algebraic element, algebraic extension,
degree of extension, finite extensions, tower theorem: [L : F ] = [L : K][K : F ], Kronecker’s
theorem, Adjunction of roots. K(α) = K[α] if α is algebraic over K.

Definition 2.1. Let F be a field. An extension E/F is an imbedding of F into some field
E, in other words, F is a ‘subfield’ of E, then we say that E is an extenion of F and write it
as E/F (read as extension field E over F ).

Let E/F be an extension of F . Then E is a vector space over F in an obvious way.
The degree of the extension, denoted by [E : F ] or by |E : F | is by definition dimF E, the
dimension of the vector space E over the underlying field F .

The extension E/F is finite if [E : F ] is finite.
Let E/F be an extension. Let S ⊂ E. Then F (S) denotes the smallest subfield of E

containing F and S. We then say that F (S) is the field obtained from F by adjoining S.
If S = {α1, . . . , αk}, we denote F (S) by F (α1, . . . , αk).
A field extension E/F is said to be simple if E = F (α) for some α ∈ E.

Example 2.2. Let F = Q and E = R or E = C. Then E/F is an extension, which are not
finite extensions.

C/R is a simple extension.

Example 2.3. Let E be any field and F its prime subfield. Then E/F is an extension. (It
may happen E = F !)

Example 2.4. Let F be any field and E := F (x), the field of rational functions on F . Then
E/F is a simple extension.

Example 2.5. Let F := Q and E := Q +
√

2Q := {a + b
√

2 : a, b ∈ Q} ⊂ R. It is easy
to check that E is a subfield of R and that E/F is an extension. (What is the inverse of
a+ b

√
2?)

Theorem 2.6 (Tower Law). Let E/F and K/E be extension fields. Then the extension K/F
is finite iff the extensions E/F and K/E are finite and we have [K : F ] = [K : E][E : F ].

Proof. If {ui : 1 ≤ i ≤ m} is an F -basis of E and {vj : 1 ≤ j ≤ n} is an E-basis of K, then
{xiyj : 1 ≤ i ≤ m; 1 ≤ j ≤ n} is an F -basis of K over F . Work out the details.

Proposition 2.7. Let E/F be a simple extension, say, E = F (α). Then precisely, one of
the following holds:

(i) There does not exist any nonzero-polynomial f ∈ F [x] with f(α) = 0.
(ii) There exists a unique monic polynomial f ∈ F [x] of least degree with f(α) = 0.

Proof. Consider the kernel of the ring homomorphism f 7→ f(α) from F [x] to E.

Definition 2.8. Let E/F be an extension and α ∈ E. Then α is said to be algebraic over
F if there exists 0 6= f ∈ F [x] such that f(α) = 0. The extension E/F is algebraic if each
element α ∈ E is algebraic over F .

An element α ∈ E is transcendental over F if it is not algebraic over F .

Proposition 2.9. Any finite extension E/F is algebraic.
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Proof. Let |E : F | = n and α ∈ E. The set {1, α, α2, . . . , αn} is F -linearly independent.

Proposition 2.10 (Minimal polynomial of an algebraic element). Let E/F be an extension
and α ∈ E be algebraic over F . Then there exists a unique irreducible monic polynomial
mα = mα,F = min(α, F ) ∈ F [x] with the following property: f ∈ F [x] is such that f(α) = 0,
iff mα divides f .

Proof. Let I := {f(x) ∈ F [x] : f(α) = 0}. Then I is a principal ideal in F [x]. Choose the
polynomial of minimal degree with leading coefficient 1.

Definition 2.11. The polynomial mα of the last proposition is said to be the minimal poly-
nomial of α over F .

Theorem 2.12. A simple extension F (α)/F is finite iff α is algebraic over F . Also, in such
a case, we have [F (α) : F ] = degmα.

Proof. The evaluation map F [x] → E = F (α) given by f(x) 7→ f(α) is a ring homomor-
phism. Its kernel is the principal ideal (min(α, F )). By the first homomorphism theorem,
F [x]/(min(α, F )) ' F [α]. But the set of polynomials {xr : 0 ≤ r < deg min(α, F )} is linearly
independent modulo (min(α, F )).

Corollary 2.13. A field extension E/F is finite iff there exist α1, . . . , αk ∈ E such that
E = F (α1, . . . , αk) and each αj is algebraic over F .

Proof. If E/F is finite, then E = F (α1, . . . , αn). Since E/F is finite. any α ∈ E is algebraic
over F . In particular, each αi is algebraic.

Conversely, let E = F (α1, . . . , αn) with each αi being algebraic over F . We need to show
that |E : F | is finite. Let Fi := F (α1, . . . , αi) 1 ≤ i ≤ n, with F0 = F . We have Fi = Fi−1(αi).
If α ∈ E is algebraic over F , then it is also algebraic over any K with F ≤ K ≤ E. Hence,
each αi is algebraic over Fi−1 and hence the extension Fi : Fi−1 is finite. Observe that we
have a tower of extensions

F0 ≤ F1 ≤ F2 ≤ · · ·Fn = E.

Since each of the two consecutive extensions is finite, the result follows from tower law.

Corollary 2.14. If E : F is algebraic and K/E is algebraic, then K/F is algebraic.

Proof. Let α ∈ K. Since α is algebraic over E, there exist ai ∈ E such that a0 + a1α +
· · · + anα

n = 0. Note that each ai ∈ F (a0, a1, . . . , an). Consequently, α is algebraic over
F (a0, . . . , an). Since each ai ∈ E is algebraic over F , it follows from the last result that
F (a0, . . . , an) : F ) is finite. Hence F (a0, . . . , an, α) : F is finite. That is, α is algebraic over
F .

Ex. 2.15. Find the degree and a basis for the given field extension: (a) Q(
√

2,
√

3) : Q, (b)
Q(
√

2,
√

3.
√

18) : Q, (c) Q(
√

2, 3
√

2) : Q, (d) Q(
√

2
√

3) : Q, (e) Q(
√

2,
√

3) : Q(
√

2 +
√

3), (f)
Q(
√

2,
√

6 +
√

10) : Q(
√

3 +
√

5).

Ex. 2.16. Let p1, . . . , pn be n-distinct positive prime numbers. Let F := Q(
√
p1, . . . ,

√
pn).

Let q1, . . . , qr be distinct primes none of which appear in the list {p1, . . . , pn}. Then
√
q1 · · · qr /∈

F .
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Ex. 2.17. Let p and q be distinct primes. Show that Q(
√
p,
√
q)/Q is of degree 4. Using

induction show that [Q(
√
p1, . . . ,

√
pn) : Q] = 2n.

Example 2.18. We wish to compute |Q(
√

2,
√

3, i, 5
√

7, 7
√

11 : Q|.
By earlier exercise, we have |Q(

√
2,
√

3) : Q| = 4. Since Q(
√

2,
√

3) ⊂ R, we have i /∈
Q(
√

2,
√

3). We have |Q(
√

2,
√

3)(i) : Q(
√

2,
√

3)| = 2. Hence |Q(
√

2,
√

3, i) : Q| = 8.
5
√

7 (resp. 7
√

11) is a root of the polynomial x5 − 7 (resp. x11 − 7). These polynomials
are irreducible by Eisenstein. Therefore, |Q( 5

√
7) : Q| = 5 and |Q( 7

√
11) : Q| = 7. So,

|Q(
√

2,
√

3, i, 5
√

7, 7
√

11 : Q| is divisible by 8, 5 and 7 and so by 280.
We estimate the degree by the tower law in a different way. We have

Q ≤ Q(
√

2,
√

3, i) ≤ Q(
√

2,
√

3, i,
5
√

7) ≤ Q(
√

2,
√

3, i,
5
√

7,
7
√

11).

The first inclusion gives 5 as a bound and the second inclusion gives 7 as a bound and the
last one is 8. Hence the degree is at most 280.

Ex. 2.19. Let E/F be a finite extension. Assume that R be a subring F ⊂ R ⊂ E. Show
that R is a field.

Ex. 2.20. Show that a finite extension of prime degree is a simple extension.

Ex. 2.21. Let a, b ∈ Q. Assume that
√
a+
√
b 6= 0. Show that Q(

√
a+
√
b) = Q(

√
a,
√
b).

Ex. 2.22. Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Ex. 2.23. Find the degrees of the following extensions: (i) Q( 3
√

2, i)/Q, (ii) Q(
√

2,
√

3)/Q.

Ex. 2.24. Let α ∈ C be a root of the polynomial x2 + x + 1 ∈ Q[x]. Show that α2 − 1 6= 0

and that α2+1
α2−1 ∈ Q(α) is 1+2α

3 .

Ex. 2.25. Let a, b ∈ Q. Find the minimal polynomial of a+ b
√

2.

Ex. 2.26. Let E/F be an extension of degree 2. Show that E = F (α) where α ∈ E \ F is
arbitrary element with deg min(α, F ) is 2.

Ex. 2.27. Show that f(x) = x3 + x + 1 ∈ Q[x] is irreducible. Let α ∈ C be a root of f .
Express 1/α as a polynomial in α.

Ex. 2.28. (i) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).
(ii) Show that {1,

√
2,
√

3,
√

6} is a Q-basis of Q(
√

2,
√

3).
(iii) Show that min(

√
2 +
√

3,Q) = x4 − 10x2 + 1.

Ex. 2.29. Keep the notation of the last exercise. (a) Show that
√

3 /∈ Q(
√

2). (b) Find
min(

√
3 +
√

2,Q(
√

3)).

Ex. 2.30. Consider the extension C/Q. Find the minimal polynomial of the following
elements: (i)

√
2, (ii)

√
−1, (iii)

√
2 +
√

3, (iv) ζ, a primitive root of unity where p is a prime
and (v) ζ6, a primitive sixth root of unity.

Ex. 2.31. Given α ∈ C, find an f(x) ∈ Q[x] such that f(α) = 0. (a) 1 +
√

3, (b)
√

2 +
√

3,

(c)
√

1 + 3
√

2 (d) 1 + i, and (e)
√

3
√

2− i.
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Ex. 2.32. Find min(
√

3−
√

6,Q) and hence find |Q(
√

3−
√

6) : Q|.

Ex. 2.33. Let CharF 6= 2. Assume that E = F (α, β) such that α2 = a ∈ F and β2 = b ∈ F
with a 6= b. Show that E = F (α+ β).

Ex. 2.34. Let E/F be finite with |E : F | = n. Let p(x) ∈ F (x) be irreducible of degree m.
Show that if m does not divide n, then p has no root in E.

Ex. 2.35. Let E/F be an extension and let α ∈ E be algebraic over F . Show that the
subfield F (α) = {p(α) : p ∈ F [x]}.

Ex. 2.36. Let E/F be an extension with α ∈ E. Show that the following are equivalent:
(i) α is algebraic over F .
(ii) The evaluation map p 7→ p(α) from F [x] to E has nonzero kernel.
(iii) F (α)/F is a finite extension.

Ex. 2.37. Let F ≤ E ≤ K be fields. The extensions need not be finite. Show that K/F is
algebraic iff K/E is algebraic and E/F is algebraic.

Ex. 2.38. Let F ≤ E ≤ K be a tower of fields. Let α ∈ K be such that F (α) : F is a finite
extension. Show that |E(α) : E| ≤ |F (α) : F |.

Ex. 2.39. Let E/F be an extension, αj ∈ E, 1 ≤ j ≤ n be algebraic over F . Show that
F (α1, . . . , αn)/F is a finite extension.

Ex. 2.40. Let E/F be an extension. Assume that α, β ∈ E are algebraic over F . Show that
α± β, αβ and α/β (if β 6= 0) are algebraic over F .

Ex. 2.41. Let E/F be an extension. Let F be the set of all elements of E which are algebraic
over F . Show that F is a subfield of F . (F is called the algebraic closure of F in E.)

Let Q stand for the algebraic closure of Q in C. Show that Q is not a finite extension of
Q.

Ex. 2.42. Let E/F be a finite extension. Assume that for any two subfields K1,K2 of E
either K1 ⊂ K2 or K2 ⊂ K1. Show that E/F is a simple extension.

Ex. 2.43. Let E = F (α) be algebraic over F with [F (α) : F ] being odd. Show that
F (α) = F (α2).

Ex. 2.44. Let E/F be a finite extension of degree n. If F is finite with q elements, then E
has qn elements.

Ex. 2.45. Exhibit an irreducible degree 3 polynomial in Z3[x]. Hence conclude that there
exists an field of 27 elements.

Ex. 2.46. Show that there exist finite fields of p2 elements for every prime p ∈ N.

Ex. 2.47. Let α ∈ E/F be transcendental over F . Show that any β ∈ F (α) \ F is transcen-
dental over F .

Ex. 2.48. Let E/F be an extension. Let α, β ∈ E. Assume that α is transcendental over F
but algebraic over F (β). Show that β is algebraic over F (α).

7



Ex. 2.49. Let α, β be transcendental numbers. Which of the following are true?
(a) αβ is transcendental.
(b) Q(α) is isomorphic to Q(β).
(c) αβ is transcendental.
(d) α2 is transcendental.

Ex. 2.50. Let F be a finite field with prime characteristic p. Show that every element of F
is algebraic over the prime field..

Ex. 2.51. Let f, g ∈ F [x] be polynomials, not both zero, and let h be their greatest common
divisor as computed in F [x]. Let E be an extension field of F . Prove that h is the greatest
common divisor of f and g when considered as polynomials in E[x].

Ex. 2.52. Show that every finite field has pn elements for some prime p.

Definition 2.53. Let E/F and K/F be two extensions of F . Then an F -homomorphism θ
is a field homomorphism θ : E → K such that θ(a) = a for all a ∈ F .

An F -automorphism of E/F is an F -isomorphism of E onto itself.
The extensions E/F and K/F are said to be K-isomorphic if there exists an isomorphism

θ : E → K which is also an F -homomorphism.

Ex. 2.54. Let E/F be an extension such that E = F (α1, . . . , αk). If an F -automorphism θ
of E leaves each of αj , 1 ≤ j ≤ k fixed, then show that θ is the identity. Hence deduce that
any two F -automorphism that agree on αj ’s must be the same.
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3 Splitting Fields and Normal Extensions

Topics: Definition of a splitting field of a polynomial, uniqueness, normal extensions, ele-
ments conjugate over a field F .

Definition 3.1. Let f ∈ F [x] and E/F be an extension. We say that f splits over E if either
f is a constant polynomial or if there exist α1, . . . , αn ∈ E such that f = c(x−α1) · · · (x−αn)
where c ∈ F is the leading coefficient of f .

The field E is said to be a splitting field of f over F if (i) f splits in E and (ii) f does not
split in any proper subfield of E.

Ex. 3.2. The extension E/F be a splitting field of f(x) ∈ F [x] iff (i) f(x) = c(x−α1) · · · (x−
αn) in E and (ii) E = F (α1, . . . , αn).

Lemma 3.3. Let E/F be an extension. Assume that f ∈ F [x] splits in E. Then there exists
a unique subfield K of E such that K is a splitting field of f over F .

Given σ : K → L be a homomorphism of fields, then we have a natural homomorphism
σ∗ : K[x]→ L[x] defined by

σ∗(a0 + a1x+ . . .+ anx
n) = σ(a0) + σ(a1)x+ · · ·+ σ(an)xn.

Theorem 3.4 (Kronecker). Let f ∈ F [x] be a nonconstant polynomial. Then there exists an
extension E/F and an α ∈ E such that f(α) = 0.

Proof. WLOG, assume f is irreducible. Then I := (f) is maximal in F [x] and F [x]/I is a
field. The map a 7→ a + I is a field homomorphism of F into F [x]/I. So we may consider
F [x]/I is an extension of F . Let α := x+ I. It is easy to check that α is a root of f(x). For,

f(α) = f(x+ I) = f(x) + I = I.

Corollary 3.5. Let f ∈ F [x]. Then there exists a splitting field E of f over F such that
|E : F | ≤ n!.

Proof. By induction. Kronecker assure at least one linear factor in an extension.

Definition 3.6. Let E/F be an extension. An automorphism σ of E is said to be an F -
automorphism if σ(x) = x for x ∈ F .

Proposition 3.7. Let σ : F → K be an onto isomorphism. Let f(x) :=
∑

i aix
i ∈ F [x] be

irreducible. Let g(x) := (σ∗f)x =
∑
σ(ai)x

i. Let α and β be roots of f and g respectively in
some extensions E/F and L/K. Then σ can be extended as an isomorphism σ : F (α)→ K(β).

Proof. σ extends to an isomorphism of F [x] onto K[x]. This induces an F -isomorphism on
the quotient rings F [x]/(f) and K[x]/(g). But then, F (α) ' F [x]/(f) via an F -isomorphism.
Complete the proof.

Corollary 3.8. Let E/F be an extensions. Let p(x) ∈ F [x] be irreducible. Assume that
α, β ∈ E are roots of p. Then F (α) and F (β) are F -isomorphic.
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Proof. While this is an immediate consequence of the last result, it is worth writing this map
explicitly.

Given any element a ∈ F (α), there is a unique polynomial fa(x) ∈ F [x] such that fa(α) =
a and deg fa < deg p or fa = 0. (Why?) Similar observation about elements of F (β). The
map π : F (α)→ F (β) is given by

π(c0 + c1α+ · · ·+ cn−1α
n−1) = c0 + c1β + · · · cn−1βn−1.

A better way of understanding this map is as follows. Let f(x), g(x) ∈ F [x]. Then f(α) = g(α)
iff f−g is divisible by p. It follows that f(α) = g(α) iff f(β) = g(β). Therefore, we get a well-
defined homomorphism π : F (α)→ F (β) which sends f(α) to f(β). Clearly, π(α) = β.

Theorem 3.9. Let F1 and F2 be fields and let σ : F1 → F2 be an isomorphism. Let f ∈ F1[x].
Assume that E1 and E2 are splitting fields of f and σ∗(f) over F1 and F2 respectively. Then
there exist an isomorphism τ : E1 → E2 which extends σ.

Proof. By induction on the degree n = deg f , the case n = 0 being trivial.
Question: What is the exact induction hypothesis?
Let α be a root of an irreducible factor f1 of f . Let β be a root of g1 := σ(f1). We then have

an F -isomorphism σ1 which extends σ of F1(α) onto F2(β). Let f(x) = (x−α)ϕ(x) ∈ F (α)[x].
Let σ∗(f)(x) = (x − β)σ∗(ϕ)(x). Then E1 is the splitting field of ϕ(x) over F (α). Similar
statement holds for σ∗(ϕ) and E2. By induction, σ1 extends to an isomorphism τ of E1 onto
E2. It is clear that τ(x) = σ(x) if x ∈ F .

Corollary 3.10. Any two splitting fields of f ∈ F [x] are F -isomorphic.

Corollary 3.11. Let E/F be a splitting field of some polynomial. Let α, β ∈ E. Then there
exists an F -isomorphism of E mapping α to β iff mα,F = mβ,F , that is, iff α and β have the
same minimal polynomial over F .

Proof. Let E = Split(f(x);F ). Let mα,F = mβ,F . We know from Corollary 3.8 that there
exists an F -isomorphism σ : F (α) ' F (β). Observe that E = Split(f(x);F (α)) as well as
E = Split(f(x);F (β)). By Theorem 3.9, there exists an extension τ : E → E of σ. Clearly,
τ(α) = β.

If τ : E → E is an F -automorphism, then τ maps mα,F to itself so that τ(α) = β is a root
of mα,F .

Definition 3.12. Let E/F be an extension. We say that α, β ∈ E are conjugate over F if
there exists an F -automorphism of E taking α to β.

Ex. 3.13. Find the splitting fields (in C) of (i) (x4 − 4) ∈ Q[x] and (ii) x3 − 2 ∈ Q[x].

Definition 3.14. An extension E/F is said to be normal iff every irreducible polynomial in
F [x] that has a root in E splits over E, that is, any polynomial f ∈ F [x] that has a root in
E has all its roots in E.

Theorem 3.15. An extension E/F is a splitting field of some polynomial f ∈ F [x] if the
extension E/F is finite and normal.
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Proof. Let E/F be a finite and normal extension. We then can write E = F (α1, . . . , αn).
Each αi is algebraic over F , say, with minimal polynomial pi, 1 ≤ i ≤ n. Since pi has a root,
namely, αi in E and since E/F is normal, it follows that each pi splits in E over F . Hence
p(x) = p1(x) · · · pn(x) also splits in E over F . Clearly E = Split(p(x);F ).

Conversely, let E = Split(f(x);F ). Assume that E = F (α1, . . . , αn) where αi are the
roots of f(x). By Corollary 3.5, |E : F | ≤ n!. Let p(x) ∈ F [x] be an irreducible polynomial
with a root α ∈ E. Consider p(x) as an element in E[x]. Let K := Split(p(x);E). Note that
F ≤ E ≤ K. Let β ∈ K be any root of p(x). We need to show that β ∈ E. By Corollary 3.8,
there exists an F -isomorphism F (α) ' F (β). Consider the field E(β). We have

E(β) = F (α1, . . . , αn)(β) = F (α1, . . . , αn, β) = F (β)(α1, . . . , αn).

This shows that E(β) = Split(f(x);F (β)). Also, since α ∈ E and E = Split(f(x);F ),
we infer that E = Split(f(x);F (α)). Hence the isomorphism F (α) ' F (β) extends to an
isomorphism of E to E(β) in such a way that α 7→ β and u 7→ u for u ∈ F . In particular,
|E : F | = |E(β) : F |. We have, by the tower law,

|E : F | = |E(β) : F | = |E(β) : E||E : F |.

Since |E : F | is finite, we conclude that |E(β) : E| = 1, that is, E(β) = E or β ∈ E.

Example 3.16. Let E be splitting field of xp−1 over Q, where p is a prime. Then E = Q(ξ)

where ξ := e
2πi
p . Then all the roots of xp−1 are of the form ξj where 0 ≤ j ≤ p−1. obviously,

ξj ∈ Q(ξ). Hence E = Q(ξ). Since xp − 1 = (x − 1)(1 + x + · · · + xp−1), all the roots of
1 + x+ · · ·+ xp−1 are of the form ξj for 1 ≤ j ≤ p− 1. We also know from Ex. 1.13 that this
polynomial is irreducible. It follows that |Q(ξ) : Q| = p− 1.

Example 3.17. Let p ≥ 3 be a prime and a 6= 0. Assume that xp− a is irreducible. We now
look at the splitting field of f(x) = xp − a over Q.

Let α ∈ R be such that αp = a. Let ξ := e
2πi
p be a primitive p-th root of unity. Then

{αξj : 1 ≤ j ≤ p} are roots of xp−a. Since these elements are distinct, these are all the roots
of xp − a. Hence Split(xp − a;Q) = Q(α, ξ).

What is the degree |Q(α, ξ) : Q|? Since α is a root of xp − a, we see that min(α,Q(ξ))
has degree at most p. Thus, |Q(α, ξ) : Q(ξ)| ≤ p. By the last example, |Q(ξ) : Q| = p− 1. It
follows that

|Q(α, ξ)| = |Q(α, ξ) : Q(ξ)| · |Q(ξ) : Q| ≤ (p− 1) · p.

Since xp − a is irreducible by hypothesis, we also have

|Q(α, ξ)| = |Q(α, ξ) : Q(α)| · |Q(α) : Q| = |Q(α, ξ) : Q(α)| · p.

Thus the required degree is divisible both by p and p− 1 and is at most p(p− 1). Hence it is
p(p− 1).

Example 3.18. The last example begs the question: When is xp−a irreducible? Our answer
uses the existence of splitting fields!

Let f(x) = xp − a ∈ F [x], where p is a prime. Then f is reducible iff it has a root in F .
If f has a root in F , then f is reducible. Before proving the converse, let us pay heed to

our intuition. It says the roots are likely to be of the from αξ where αp = a and ξ is a p-th
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root of unity. To exploit this idea, let us assume that f is reducible and produce a p-th root
of a in F . We start with E = Split(xp − a;F ) and write

xp − a = (x− α1) · · · (x− αp).

If α1 = 0, then f has a root in F . So assume that α := α1 6= 0. If we let ξi := αi/α, then
the equation ξp = a/a = 1 shows that ξ is a p-th root of unity. Thus, for each i, we have
αi = ξiα. Since xp− a = (x− ξ1α)(x− ξ2α) · · · (x− ξpα), and the constant term lies in F , we
conclude that ξ1 · · · ξp · αp = ξ1 · · · ξp · a ∈ F . It follows that ξ1 · · · ξp ∈ F .

Now, let f(x) = g(x)h(x) be a proper factorization. Assume that deg g = r < n. In E(x),
thanks to unique factorization, we see that g must be a product of r terms of the form (x−αi).
WLOG, we let g(x) = (x − α1) . . . (x − αr). Observe that α1 · · ·αr = ξ1 · · · ξrαr = ξαr ∈ F
where ξ = ξ1 · · · ξr. Note that ξp = 1. Since r and p are relatively prime, there exist integers
m and n such that mr + np = 1. We have

ξmα = ξmαmr+np = (ξαr)m(αp)n ∈ F.

What is (ξmα)p = (ξp)mαp = a. Thus, the element ξmα ∈ F is a p-th root of a. That is,
f(x) = xp − a has a root in F .

Example 3.19. f(x) = x6 − 1 over Q. We factorize f as

f(x) = (x3 − 1)(x3 + 1) = (x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1).

If ξ is a primitive 3rd root of unity, then

f(x) = (x− 1)(x− ξ)(x− ξ2)(x+ 1)(x+ ξ)(x+ ξ2).

Thus, Q[ξ] is the splitting field of f over Q. We have |Q(ξ) : Q| = 2.

Example 3.20. f(x) = x6 + 1 over Q.
Keeping the notation of the last example. Then the roots are ±i, ±iξ, ±iξ2. Hence

Q(ξ, i) is the splitting field of f over Q. Since ξ = −1
2 +

√
3
2 i, we find that ξ /∈ Q(i). Hence

we conclude that |Q(i, ξ) : Q| = 4.

Lemma 3.21. Let E/F be an extension. Let F ≤ K ≤ E be such that K/F is the splitting
field of a polynomial f(x) ∈ F [x]. Let σ be an automorphism of E which fixes F pointwise.
Then σ(K) ⊂ K.

Proof. Let u ∈ K. Since K/F is normal, u is algebraic over F , say, with p(x) = min(u;F ).
Since K is the splitting field of f(x), it is a normal extension by Theorem 3.15. Hence σ(u)
must be a root of f . Hence σ(u) ∈ K.

Example 3.22. f(x) = x2 + ax+ b ∈ F [x].

Ex. 3.23. Show that x2 − 3 and x2 − 2x− 2 both have the same splitting field over Q.

Ex. 3.24. Show that Split(x4 − 4x2 − 5;Q) is of degree 4 over Q.

Ex. 3.25. Let F ≤ K ≤ E. Assume that E = Split(f(x);F ). Show that E = Split(f(x);K).

Ex. 3.26. If α ∈ E is algebraic over F and E = F (α) is normal, show that E =
Split(min(α, F );F ).
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Ex. 3.27. Find the splitting fields of the following polynomials over Q. Also, find the degrees
of the splitting fields over Q. (i) x4 − 1, (ii) (x2 − 2)(x2 − 3), (iii) x3 − 3, (iv) x3 − 1, (v)
(x2 − 2)(x3 − 2).

Ex. 3.28. Find the splitting fields over Q of the following polynomials and find their degree
over Q: (i) x6 − 1, (ii) x6 + 1 and (iii) x6 − 27.

Ex. 3.29. Show that the splitting field of x4 + 3 over Q is Q(i, α
√

2), where α = 4
√

3. What
is its degree over Q?

Ex. 3.30. Let E : F be a finite extension which is the splitting field of a set of polynomials
in F [x]. Show that E is the splitting field of a single polynomial in f [x].

Ex. 3.31. Let |E : F | = 2. Show that E is the splitting field over F .

Ex. 3.32. Let E be a splitting field of f(x) ∈ F [x]. Show that any F -automorphism of E
permutes the roots of f .
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4 Separable Extensions

Topics: Formal derivative, An irreducible polynomial over a field of characteristic 0 has only
simple roots, An irreducible polynomial f over a field of characteristic p has only multiple
roots iff its is of the form f(x) = g(xp). All roots of an irreducible polynomial have the same
multiplicity.

Separable polynomial, separable extension, perfect fields, fields of characteristic 0 and
finite fields are perfect.

Definition 4.1. Let f = a0 +a1x+ · · ·+anx
n ∈ F [x]. Then the formal derivative Df ∈ F [x]

is defined by Df = a1 + 2a2x+ · · ·+ nanx
n−1. Note that D : F [x]→ F [x] is F -linear.

Definition 4.2. Let f ∈ F [x]. An element α ∈ E where E/F is an extension field, is said to
be repeated root of f (or a root of f with multiplicity m) if (x− α)m with m ≥ 2 is a divisor
of f in E[x]. A root of f , which is not a repeated root is called a simple root.

Proposition 4.3. Let (x) ∈ F [x] be nonzero. Let E be the splitting filed of f(x). Then the
following are equivalent:

(i) f has a repeated root in E.
(ii) There exists α ∈ E such that f(α) = 0 = (Df)(α).
(iii) There exists a non-constant polynomial g ∈ F [x] that divides both f and its derivative

Df in F [x].

Proof. Let (i) hold. Then there exists α ∈ E and k ≥ 2 such that f(x) = (x−α)kg(x) ∈ E[x].
Clearly, f(α) = 0 = (Df)(α). Hence (ii) is true.

Let (ii) hold. Let g := min(α, F ). Since f(α) = 0 = (Df)(α), it follows that f and Df lie
in the kernel of the evaluation homomorphism h(x) 7→ h(α). Since the kernel is the principal
ideal (g) ⊂ F [x], the polynomial g is a common divisor of both f and Df . That is, (iii) is
proved.

Suppose that (iii) holds. Write f(x) = g(x)h(x) ∈ F [x]. Since f splits in E, we see that g
also splits in E. Let α ∈ E be a root of g. We then have f(α) = 0 and f(x) = (x−α)h(x) for
some h(x) ∈ E[x]. Now, Df(x) = h(x) + (x−α)(Dh)(x). Since g divides both f and Df and
since (x−α) divides g(x), it follows that (x−α) is a divisor of h(x) = Df(x)−(x−α)(Dh)(x),
say, h(x) = (x− α)h1(x). But then f(x) = (x− α)(x− α)h1(x). Thus, α is a repeated root
of f in E, the splitting field of f(x).

Ex. 4.4. An irreducible polynomial f(x) ∈ F [x] is not separable iff Df = 0.

Proposition 4.5. Let f(x) ∈ F [x] be irreducible. Then f is not separable iff (i) the charac-
teristic of F is a prime p and (ii) f(x) = g(xp), that is, f(x) = a0+a1x

p+a2x
2p+ · · ·+anxnp.

Proof. Assume that f is not separable. Hence there exists a non-constant g(x) ∈ F [x] such
that g divides f and Df . Since f is irreducible and g|f , we deduce that f and g are associates.
Since g and hence f divides Df , a polynomial of degree less than that of f , it follows that
Df(x) = 0. But this means that each of the coefficients of Df(x) is zero, say, kak = 0. If
ak 6= 0, this can happen iff the characteristic of F is p > 0 and k is a multiple of p.

Corollary 4.6. An irreducible polynomial over a field F of characteristic 0 has only simple
roots. Hence every f(x) ∈ F [x] is separable.
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Proof. Let f(x) ∈ F [x] be irreducible. If f has a repeated root, then f and Df have a
non-constant divisor. This violated the irreducibility of f .

Definition 4.7. An irreducible polynomial f ∈ F [x] is said to be separable over F iff f does
not have multiple roots in a splitting field of f .

A polynomial is said to be separable iff each of its irreducible factors is separable over F .

Corollary 4.8. An irreducible polynomial is separable iff Df = 0.

Definition 4.9. An algebraic extension E/F is said to be separable iff the minimal polyno-
mial of each element of E is separable over F .

Corollary 4.10. Let F be a field of characteristic 0. Then every polynomial in F [x] is
separable over F and hence every algebraic extension E/F is separable.

Example 4.11. Let CharF = p > 0. Let a ∈ F be such that f(x) = xp − a has no root in
F . We claim that f is an inseparable polynomial. For, if α, β are roost of f(x) in a splitting
field, we have αp = a = βp. Hence (α − β)p = αp − βp = 0. Hence we have α = β. Thus
f has only one root, say, α, with multiplicity p. We now show that f is irreducible. If g is
an irreducible factor of f , then γ(ga) = 0. Hence g = min(α, F ) and so g divides f . Since
deg f = p and deg g ≥ 1, it follows that deg = p and hence f = g.

In particular, if E = F (y), where y is transcendental, then f(x) = xp − y ∈ E[x] is
irreducible. Any extension K/E in which f has a root will be inseparable.

Example 4.12. Let F := Zp(t) where t is an indeterminate. Consider f(x) := xp− t ∈ F [x].
We claim that f is irreducible but not separable.

It is irreducible by Eisenstein criterion with t as the prime for testing.
If α is a root of f in a splitting field, then

(x− α)p = xp − αp = xp − t.

Thus it has multiple roots.

Ex. 4.13. Assume that gcd(f(x), DF (x)) = 1. Prove that f is separable.

Ex. 4.14. Let f(x) ∈ F [x] be irreducible. Show that f is separable iff Df(x) 6= 0.

Ex. 4.15. Assume that CharF = 0 and K is the splitting field of f(x) ∈ F [x]. Let
d(x) = gcd(f(x), Df(x)). Let g(x) be defined by f(x) = d(x)g(x). Show that the roots of f
and g are the same and that g is separable.

Ex. 4.16. Let F be infinite. Let α, β ∈ E are algebraic over F . Assume that α is the root
of a separable polynomial in F [x]. Show that F (α, β) is a simple extension.
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5 Finite Fields

Topics: Existence, uniqueness, cyclicity of a finite subgroups of F ∗, subfields of finite fields,
Primitive element theorem.

Let R be a ring. Recall that for n ∈ N, the element n · 1 = 1 + · · · + 1 (n-times). If for
each n ∈ N, we have n · 1 6= 0, we then say that the characteristic of R is 0 (zero). If there
exists an n ∈ N with n · 1 = 0 and if p is the least such with this property, then R is said to
have positive characteristic p.

Lemma 5.1. Let R be an integral domain. Then the characteristic of R is either 0 or a
prime p ∈ N.

Proof. Let the characteristic of R be positive m ∈ N. If m is composite, say m = pq with p
and q nonunits, then p · 1 6= 0 6= q · 1 but their product is zero.

Lemma 5.2. (i) The set P := Z · 1 = {n · 1 : n ∈ Z} is a subring of R, called the prime ring.
(ii) P ' Z if the characteristic of R is 0.
(iii) P ' Zm if the characteristic of R is m.

Corollary 5.3. The characteristic of any finite field F is a prime p ∈ N and we have Zp ≤ F .
Furthermore, |F | = pn for some n ∈ N.

Proof. F : Zp is a finite extension.

Lemma 5.4. Let F be a field of characteristic p > 0. Then (x + y)p
n

= xp
n

+ ypn and
(xy)p

n
= xp

n
yp

n
for all x, y ∈ F . In particular, x 7→ xp is an injective field homomorphism

of F to itself.

Proof. Observe that the standard binomial theorem is valid in any commutative ring and
except for the extreme terms, all the binomial coefficients

(
pn

r

)
, r 6= 0, pn are divisible by

p.

Theorem 5.5. A field E has pn elements iff it is a splitting field of the polynomial xp
n − x

over its prime subfield Zp.

Proof. Let K := Split(p(x) := xp
n − x;Zp). Let E be the set of roots of the polynomial

xp
n − x. Since Dp(x) = −1, we see that p is separable and hence all the roots of p(x) are

distinct. Using Lemma 5.4, one easily shows that E is a field. Since K is the splitting field
of p(x), we conclude that E = K. In particular, |K| = pn.

To prove the converse, observe that the multiplicative group E∗ is of order pn− 1. Hence
for any a ∈ E∗, we have ap

n−1 = 1 and hence ap
n

= a. Also, 0 ∈ E has the same property.
Thus, all elements of E are roots of the polynomial xp

n − x. Since |E| = pn, it follows that
E is the splitting field of p(x) = xp

n − x over Zp.

Corollary 5.6. There exists a finite field GF (pn) of order pn for each prime p and n ∈ N.
Two finite fields are isomorphic iff they have the same number of elements.

Proof. The splitting field of xp
n − x over Zp exists by Corollary 3.5. Its order is pn by the

last theorem.
If two fields E and K have the same order pn, then they the splitting fields of xp

n − x
over Zp by Theorem 5.5. Then K and E are isomorphic by Corollary 3.10.
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The field GF (pn) is called the Galois field of order pn.

Theorem 5.7. Let G be a finite subgroup of F ∗, the multiplicative group of a field F . Then
G is cyclic.

In particular, if F is a finite field, then F ∗ is cyclic.

Proof. Let a ∈ G be of maximal order, say, m. Then o(g)|o(a) for any g ∈ G. Hence gm = 1
for every g ∈ G. That is, every g ∈ G is a root of the polynomial xm − 1. This polynomial
has at most m roots in F . Hence |G| ≤ m. But {ak : 1 ≤ k ≤ m} are m distinct elements.
Hence we conclude that G = 〈a〉.

Ex. 5.8. Let R be a ring with prime characteristic p. The map ϕ : x 7→ xp is called the
Frobenius map and it is a ring homomorphism. It is one-one if R is an integral domain.

Ex. 5.9. Let K be a field of characteristic p. Fix r ∈ N. Then the subset F := {x ∈ K :
ϕr(x) = x} is a subfield of K.

Ex. 5.10. Let K be a finite field with pn elements. Then any subfield K has pr elements
for 1 ≤ r ≤ n with r dividing n. Furthermore, for any such r, there exists a unique subfield
F ≤ K with pr elements. Hint: F := {x ∈ K : ϕr(x) = x} (existence). For uniqueness,
observe that if E is any such field, each of its elements is a root of xp

r − x.

Ex. 5.11. Let E be a finite field and F ≤ E. Then E/F is a simple extension.

Ex. 5.12. Let p ∈ N be a prime. For any n ∈ N, there exists an irreducible polynomial
f(x) ∈ Zp[x] of degree n.

Ex. 5.13. Show that the Frobenius map ϕ : GF (pn)→ GF (pn) is an automorphism of order
n.

Ex. 5.14. Let F := GF (pn). Show that xp
n − x =

∏
t∈F (x− t).

Ex. 5.15. Let f(x) ∈ Zp[x] be of degree greater than 1. Show the number of roots of f in
GF (pn) is the degree of gcd(f(x), xp

n−x) . Hint: You may compute the gcd in F := GF (pn)
where xp

n − x =
∏
t∈F (x− t). You need Ex. 2.51.

Ex. 5.16. Show that each a ∈ GF (pn) can be written in the form bp for a unique b ∈ GF (pn).

Ex. 5.17. Show that no finite field is algebraically closed. When do we say a field is
algebraically closed? Need to define.

Ex. 5.18. Show that every irreducible polynomial f(x) ∈ Zp[x] divides xp
n − x for some n.

Ex. 5.19. Show that xp
n − x is the product of all monic irreducible polynomials in Zp[x] of

degree d where d runs through all divisors of n.

Theorem 5.20 (Primitive Element Theorem). Let E/F be a finite separable extension. Then
E = F (α) for some α ∈ E. Thus, any finite separable extension is simple.

Proof. Let us start with the case when F is infinite. Let E = F (α, β). Then α and β are
algebraic over F . Let f and g be the minimal polynomials of α and β. Let K := Split(fg;F )
be the splitting field of fg over F . Then f and g split in K. (Why?) Let α1 = α, α2, . . . , αm
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be the roots of f . Let β1 = β, β2, . . . , βn be the roots of g. Note that the roots of f and g are
distinct, since the extension E : F is separable.

Since F is infinite we can find a non-zero c /∈
{
β−βj
α−αi : 1 ≤ i ≤ m, 1 < j ≤ n

}
. Let θ =

β − cα. We claim that E = F (θ).
Consider h(x) = g(c(x− α) + β) = g(cx+ (β − cα)) ∈ F (θ)[x]. Note that f(x) ∈ F (θ)[x].

We also have f(α) = 0 and h(α) = g(β) = 0. Thus α is a common root of both f and h
in F (θ). Also, for any i 6= 1, αi is not a root of h. For, c(αi − α) + β 6= βj for i > 1 and
any j, by our choice of c. Hence α is the only root of h in F (θ). It follows (Why?) that
(x − α) is the GCD of f(x) and h(x) in the ring F (θ)[x]. This means that α ∈ F (θ). But
then β = θ + cα ∈ F (θ). Hence E = F (θ).

The general case, namely when E = F (α1, . . . , αn) follows by induction.
If F is finite, then E is finite and we know E∗ = 〈a〉. Hence E = F (a).

Remark 5.21. The proof, in fact, gives us a method to find θ. In the case of characteristic
0, we can choose a non-zero integer m such that m is not of the form

β−βj
α−αi . See the examples

below.

Example 5.22. Q(
√

2, i) = Q(
√

2 + i).

Example 5.23. Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Example 5.24. Q(
√

2,
√

3, i) = Q(
√

2 +
√

3 + i).

Example 5.25. Lest that you believe that Q(α, β) is always Q(α + β), we look at another
example. Q(

√
2 + i,

√
3− i) = Q((

√
3− i)− (

√
2 + i)).

Example 5.26. Let F := Z2(t) be the field of rational functions over Z2. Consider f(x) :=
x2 − t and g(x) = x2 − (t + t3). Let α and β be roots of f and g in a splitting field. We
have α2 = t and β2 = t + t3. It is easy to see that f is irreducible over F (β) and g is
irreducible over F (α). We therefore have |F (α, β) : F | = 4. Let θ ∈ F (α, β). We write it as
θ = p(t) + q(t)α+ r(t)β. On squaring, we get

θ2 = p(t)2 + q(t)2α2 + r(t)2β2 = p(t)2 + tq(t)2 + (t+ t3)r(t)2 ∈ F (t).

In particular, |F (θ) : F | ≤ 2 for any θ ∈ F (α, β). This shows that we cannot find a primitive
element for the extension F (α, β) : F .
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6 Galois Group

Topics: Galois group: Definition and examples.

Definition 6.1. Let E/F be an extension. The set of all automorphisms σ of F that leave
F pointwise fixed is a group under composition and it is called the Galois group of E/F . We
let Gal (E/F ) denote this group.

The following simple observation is the moving principle of Galois theory!

Lemma 6.2. Let E/F be an extension. Let f(x) ∈ F [x] and let α ∈ E be a root of f and
σ ∈ Gal (E/F ). Then σ(α) is a root of f .

Proposition 6.3. Let E/F be the splitting field of f(x) ∈ F [x]. Let α, β ∈ E. Then there
exists σ ∈ Gal (E/F ) iff min(α, F ) = min(β, F ).

Proof. If α, β ∈ E have the same polynomial, then there is an F -isomorphism σ : F (α) ' F (β)
such that σ(α) = β. Since E is also the splitting field of f(x) over F (α) as well over F (β),
there exists an extension τ : E → E which extends σ. In particular, τ ∈ Gal (E/F ) and
τ(α) = β.

The converse follows from the last lemma.

Lemma 6.4. Let E = F (α1, . . . , αn) be an algebraic extension over F . If σ, τ ∈ Gal (E/F )
are such that σ(αi) = τ(αi) for 1 ≤ i ≤ n, then σ = τ .

Proof. Prove this by induction on n. Note that any u ∈ E is a polynomial p in α = α1 and
hence σ(p(α)) = τ(p(α)).

Corollary 6.5. If E = Split(f(x);F ) and if f is separable of degree n, then Gal (E/F ) is
isomorphic to a subgroup of Sn and hence |Gal (E/F )|is a divisor of n!

Proof. Let α, . . . , αn be the distinct roots of f and σ ∈ Gal (E/F ). Then σ induces a per-
mutation of the set {αi : 1 ≤ i ≤ n}. Distinct elements of Gal (E/F ) induce distinct
permutations.

Theorem 6.6. Let f(x) ∈ F [x] be separable. Let E := Split(f(x);F ). Then |Gal (E/F )| =
|E : F |.

Proof. First observe that E/F is separable. By the primitive element theorem, there exists
α ∈ E such that E = F (α). Let p(x) = min(α, F ). Let n = deg p(x). Note that p(x) and α
are separable. We have |E : F | = |F (α) : F | = deg p(x) = n. Since E is the splitting field and
since α ∈ E, all the roots, say, α = α1, . . . , αn of p(x) lie in E. They are all distinct, since E
is separable. By Proposition 6.3, there exist distinct elements (why?) σi ∈ Gal (E/F ) such
that σi(α) = αi. Thus Gal (E/F ) has at least n elements. If σ ∈ Gal (E/F ), then σ(α) must
be one of αi’s and hence σ must be σi. We therefore conclude that Gal (E/F ) = n.

Example 6.7. We compute the Galois group Gal (C/R).
Let σ ∈ Gal (C/R). Then σ(i) must be a root of the minimal polynomial z2 + 1 of i.

Hence σ(i) = ±i. The maps 1(a+ ib) = a+ ib and σ(a+ ib) = a− ib are R-automorphisms
of C. Hence Gal (C/R) = 〈σ〉.
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Example 6.8. Let us look at the Galois group Gal (Q(21/3)/Q). If σ is an element of this
group, then σ(21/3) must be a root of the polynomial x3 − 2. Its roots are α := 21/3, αξ and
αξ2 where ξ is a primitive cube root of unity. Except α, no other root lies in Q(21/3) ⊂ R.
This is a facile argument. For, this argument uses an extraneous data such as our knowledge
of complex numbers and that all roots of x3 − 2 can be found in C etc.

A correct way of showing this is to show that the function x 7→ x3−2 in strictly increasing
and hence it has a unique zero in R. As Q(21/3) ⊂ R, the only root of x3 − 2 in Q(21/3) is
21/3. Hence σ(21/3) = 21/3.

Hence σ(21/3) = 21/3 and hence we conclude that the Galois group is trivial.
Note that we used Lemmas 6.2 and 6.4 to arrive at the conclusion.

Example 6.9. Galois group G of Split((x2 − 2)(x2 − 3);Q).
By Lemma 6.2, any σ ∈ G must take

√
2 to either

√
2 or to −

√
2. Similarly, σ(

√
3) ∈

{±
√

3}. Thus G has at most 4 elements:

1 τ α β√
2 7→

√
2
√

2 7→ −
√

2
√

2 7→
√

2
√

2 7→ −
√

2√
3 7→

√
3
√

3 7→
√

3
√

3 7→ −
√

3
√

3 7→ −
√

3

We now show that there do exist such elements in the Galois group. Let us construct τ .
Since x2− 2 is the minimal polynomial of both ±

√
2, there exists a Q-isomorphism of Q(

√
2)

to Q(−
√

2). Since Q(
√

2,
√

3) : Q = 4, it follows that the minimal polynomial x2 − 3 of
√

3
is also the minimal polynomial of

√
3 over Q(

√
2). Hence σ extends to a Q-automorphism τ

such that τ(
√

3) =
√

3. Thus, τ ∈ G exists with the required properties.
Arguing similarly, we construct the other elements α and β of G. It is easy to check that

each of τ , α and β is of order 2. We conclude that G ' Z2 × Z2.
Question: What is β ◦ α?

Example 6.10. Let us find the Galois group G of the splitting field E of x3− 2 over Q. Let
α := 21/3 be the unique cube root of 2. Let ξ be a primitive cube root of unity. Then the
roots of x3 − 2 are α, αξ, αξ2. By Proposition 6.3, there exists σ ∈ G which takes α to αξ.

If α(ξ) = ξ, then σ(αξ2) = α so that σ may be considered as the cycle (123) ∈ S3.
If α(ξ) = ξ2, then σ(αξ2) = αξ2 so that σ may be considered as the transposition (12) ∈ S3.
By Corolalry 6.5, we have Gal (E/Q) is a subgroup of S3. From Theorem 6.6, we know

|Gal (E/Q)| = |E : Q| = 6. Hence Gal (E/Q) is a subgroup of order 6 in S3. Hence we
conclude that Gal (E/Q) = S3.

Example 6.11. We now compute the Galois group of Split((xp − 1);Q) where p is a prime.

Let ξ := e
2πi
p . Then ξ is a primitive p-th root of unity and ξk, 0 ≤ k < p are all the roots

of the polynomial xp − 1. Hence Split(xp − 1;Q) is Q(ξ). We know from Theorem 2.12 that
|Q(ξ) : Q| = p− 1.

Now if σ is an element of the Galois group, then σ(ξ) = ξk for some 1 ≤ k ≤ p − 1 by
Lemma 6.2. Note that if σ(ξ) = ξr and τ(ξ) = ξs with r 6= s, (where 1 ≤ r, s ≤ p− 1), then
σ 6= τ . It follows that |Gal (Q(ξ)/Q)| ≤ p− 1.

Note that Q(ξk) = Q(ξ) for 1 ≤ k ≤ p − 1. Using Proposition 6.3, we see that there do
exist Q-isomorphisms σk of Q(ξ) onto Q(ξk) such that σk(ξ) = ξk, for 1 ≤ k ≤ p− 1. These
are, of course, Q-automorphisms of Q(ξ) and hence elements of the Galois group.

We claim that the Galois group is Abelian, in fact, cyclic. For, if we let σ(ξ) = ξ2, then
σj , 1 ≤ j ≤ p− 1 are all distinct. See also the next example.
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Example 6.12. Let ξ ∈ C be a primitive n-th root of unity. Let E := F (ξ). Then Gal (E/Q)
is isomorphic to a subgroup of U(Zn), the group of units modulo n.
(i) In particular, Gal (E/Q) is abelian.
(ii) If n = p, a prime, then Gal (E/Q) is cyclic.

If σ ∈ Gal (E/F ), then σ(ξ) = ξj where j is unique modulo n. Also, since σ is an
automorphism, σ(ξ) must be a primitive root of unity. Thus, j is relatively prime to n.
Denote it by σj . We thus have a map

ϕ : Gal (E/Q)→ U(Zn) given by σj 7→ [j] ∈ U(Zn).

It is easy to see that this map is a group homomorphism.

σiσj(α) = αi(α
j) = αij .

Hence ϕ(ij) = [ij] = ϕ(i)ϕ(j).
Let us look at a special case. Let n = 8. If ξ is the a primitive 8th root of unity, then

|Q(ξ) : Q| = 4. The minimal polynomial of ξ over Q is x4 + 1. The possible automorphisms
correspond to the maps

ξ 7→ ξ, ξ 7→ ξ3, ξ 7→ ξ5, ξ 7→ ξ7.

If we list the roots of the minimal polynomial in the order ξ, ξ3, ξ5ξ7, then the automorphism
σ which sends ξ to ξ3 has the following action:

ξ 7→ ξ3, ξ3 7→ ξ, ξ5 7→ ξ7, ξ7 7→ ξ5.

Thus it corresponds to (12)(34) ∈ S4. Similarly, σ which send ξ to ξ5 corresponds to (13)(24)
and the last one to (14)(23). Thus we arrive at

Gal (E/Q) = {e, (12)(34), (13)(24), (14)(23)} ≤ S4.

Example 6.13. Let f(x) := xn − c ∈ Q[x]. Let F := Q(ξ) where ξ is a primitive n-th root
of unity. Let E := Split(f(x);F ). To compute Gal (E/F ) we proceed as in the last example.
Let α be a root of f . The roots of f are αξj , 0 ≤ j ≤ n − 1. If σ ∈ Gal (E/F ) is given,
then σ(α) = αj for some j, which is unique modulo n. We denote such a σ by σj . The
map ϕ : Gal (E/F )→ Zn is given by ϕ(σj) = [j]. This map is easily checked to be a one-one
homomorphism.

When is this map onto? The next exercise answers this question.

Ex. 6.14. Let f(x) ∈ F [x] be separable. Let E = Split(f(x);F ). Then the Galois group
Gal (E/F ) acts transitively on the roots of f iff f is irreducible.

Let fbe separable and irreducible with distinct roots α1, . . . , αn. The transitivity of
Gal (E/F ) follows from Proposition 6.3.

Let the Galois group act transitively on the roots of f . Let if possible g and h be (non-
trivial) irreducible factors of f . Let α and β be their roots. There exists σ ∈ Gal (E/F ) such
that σ(α) = β. Hence we have

0 = σ(g(α)) = g(σ(α)) = g(β).

Hence h is a factor of g. Since both g and h are irreducible, it follows that g = h and that g2

is a factor of f . This contradicts the separability of f . Hence f is irreducible.
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Another way of seeing this is as follows: Let αi, 1 ≤ i ≤ n = deg f be the roots of f in E.
Since f is separable all the roots are distinct. Let g be an irreducible factor of f . We may
assume WLOG that α1 is a root of g. Given i > 1, there exists σ = σi ∈ Gal (E/F ) such that
σ(α1) = αi. We claim that αi is a root of g. For,

0 = g(αi) = σ(g(α1)) = g(σ(α1)) = g(α1).

It follows that all the distinct αi’s are roots of g and hence deg g ≥ n = deg f . We conclude
that f and g are associates and hence f is irreducible.

Example 6.15. Consider f(x) = (x2 + 1)(x2 + 2) and g(x) = x4 − 2x2 + 9 in Q[x]. The
roots of f are ±i and ±i

√
2. The roots of g are ±(

√
2 ± i). The splitting fields of f and

g is E := Q(i,
√

2). The Galois group has four elements that correspond to i 7→ ±i and√
2 7→ ±

√
2. Let us order the roots of f and g as follows:

f : (i,−i, i
√

2,−i
√

2; g : (
√

2 + i,
√

2− i,−
√

2 + i,−
√

2− i.

The Galois group Gal (E/Q) acts on the roots of f and g. The action yields the following
subgroups of S4.

Gal (f/Q) = {Id, (12, (34), (12)(34)}
Gal (g/Q) = {Id, (12)(34), (13)(24), (14)(23)}.

Observe that Gal (f/Q) does not act transitively on the roots of f whereas Gal (g/Q) acts
transitively on the roots of g.

Note that Gal (f/Q) ' Gal (E/Q) and Gal (g/Q) ' Gal (E/F ). But they are not conju-
gate in S4, since the cycle decomposition of the elements are different.

Exercise 6.14 is therefore about how the Galois group is realized as group of permutations
of the roots and not about its structure as an abstract group.

Example 6.16. Galois group of Split((xp − c);Q) where p is an odd prime. Assume that
f(x) := xp− c is irreducible. (This is same as requiring that c is not a p-th power in Q. See ) Give Ref!

Let ga := c1/p be the unique real root of f . Let ξ = e
2πi
p be a primitive root of unity.

Then E := Split(f(x);Q) = Q(ξ, α).
We have already seen that |E : Q| = p(p − 1). In view of Theorem 6.6, we have Give Ref!

|Gal (E/Q)| = p(p− 1). If σ ∈ Gal (E/F ), then

σ(α) = αξi and σ(ξ) = ξj ,

where 0 ≤ i ≤ p − 1 and 1 ≤ j ≤ p − 1. Denote suchσ by σij . There are the elements of
Gal (E/F ). We now show that this group is not abelian.

σ11σ12(α) = αξ2,

σ12σ11(α) = αξ3.

We have a pretty description of this group. This is gleaned if we carry out the computation
above in a more general setting.

σij ◦ σrs(ξ) = ξir

σij ◦ σrs(α) = ξis+jα.
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Thus reading modulo p in the variable i, we have

σij ◦ σrs = σir,is+j .

Those who has seen affine group of R will immediately recognize a similar structure here.
Consider G = Z∗p × Zp as sets. We define a binary operation

(a, b) ? (c, d) := (ac, ad+ b).

Check that this makes G into a group called the one-dimensional affine linear group over the
field Zp. What we have found is that Gal (E/F ) is isomorphic to this affine group.

Example 6.17. Let us find Gal (GF (pn)/Zp). We know that there exists α ∈ E := GF (pn)
such that E = F (α) where F := GF (p). If f(x) = min(α, F ), then we know deg f = n
and that E = Split(f(x);F ). Hence deg f = n. Now any σ ∈ Gal (E/F ) is determined by
σ(α) as any nonzero element of E is of the form αi. By Lemma 6.2, σ(α) is a root of f and
hence Gal (E/F ) will have at most n elements. If we let σ(u) = up, then σ ∈ Gal (E/F ) by
Lemma 5.4. We observe that if 0 < j < n, then σj is not the identity. Assume the contrary.
Then for any u ∈ E, we have σj(u) = up

j
= 1 and hence all pn elements of E are the roots

of the polynomial xp
j − 1. Since j < n, this is a a contradiction. We therefore conclude that

|Gal (E/F )| ≥ n and hence n.
Observe that Gal (E/F ) is a cyclic group with σ as a generator. The automorphism σ is

called the Frobenius automorphism.

Example 6.18. Let F = Zp(t). Let E := Split(xp − t;F ). Then Gal (E/F ) is trivial. It
follows from Example 4.12 that E = F (α) and that f(x) = (x − α)p. Hence α is the only
root of f in E. We therefore conclude that the Galois group is trivial.

Example 6.19. Galois group of x4−2. Let E = Split(x4 − 2;Q). Then E = Q(ξ, γ) where ξ
is a primitive fourth root of unity and α ∈ R is such that α4 = 2. By now standard arguments
we have |E : Q| = 8. Hence, by Theorem 6.6, we have |Gal (E/Q)| = 8. It is easy to see that
the Galois group is generated by σ and τ :

σ : α 7→ iα and i 7→ i

and
τ : α 7→ α and i 7→ −i.

We note that σ4 = 1 = τ2. Also, we have τσ = σ3τ . Hence we conclude that Gal (E/Q) is
isomorphic to D8, the dihedral group of order 8.

Example 6.20. Let σ ∈ Gal (R/Q). We claim that σ is order-preserving: if x < y then
σ(x) < σ(y). Write y − x = t2 > 0. Then σ(y) − σ(x) = σ(t2) = σ(t)2 > 0. If σ is not the
identity, then there exists x ∈ R such that σ(x) 6= x. So, either x < σ(x) or x > g(x). If
x < σ(x), by the density of rationals, there exists r ∈ Q such that x < r < g(x). By the order
preserving property, we have σ(x) < σ(r) = r, a contradiction to the choice of r. Similarly
we see that x > σ(x) cannot happen. Thus σ is the identity. That is, Gal (R/Q) is the trivial
group.
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Ex. 6.21. Let E/F be a finite separable extension. Prove that |Gal (E/F )| ≤ |E : F |.
The primitive element theorem says that there exists α ∈ E such that E = F (α). Let

u ∈ E. Then u = p(α) for some polynomial p(x) ∈ F [x]. If σ ∈ Gal (E/K), then σ(u) =
σ(p(α)) = p(σ(α)). It follows that σ ∈ Gal (E/K) is completely determined by σ(α).

Let p(x) = min(α, F ). Then σ(α) is a root of p. We conclude that the order |Gal (E/K)|
is bounded by the number of roots of p in E. Hence we have |Gal (E/F )| ≤ deg p = |E : F |.

Ex. 6.22. Let E/F be finite. Show that Gal (E/K) is finite.
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7 Galois Correspondence

Topics: Galois Extensions, Galois correspondence, Fundamental Theorem of Galois Theory.

Definition 7.1. Let E be a field and let G be a group of automorphisms of E. Then the set

EG := {a ∈ E : σ(a) = a for all σ ∈ G}

is a subfield of E and is called the fixed field of G.

Example 7.2. Let C and G = Gal (C/R). Then CG = R.

Example 7.3. Let E := Q(
√

2,
√

3) = Split((x2 − 2)(x2 − 3);Q). Let α =
√

2 and β =
√

3.
We have σ, τ ∈ Gal (E/Q) such that σ(α) = −α, σ(β) = β and τ(α) = α while τ(β) = −β.
Let H := 〈στ〉. If we write

E 3 u = u1 + u2α+ u3β + u4αβ,

then στ(u) = u leads us to conclude that u2 = 0 = u3. Hence EH = Q(
√

6).

Example 7.4. This is an extract from Example 7.26.
Let ξ be a primitive 7th root of unity. Let E := Q(ξ). Then |E : Q| = 6 and G :=

Gal (E/Q) ' Z6 is cyclic. Let α ∈ G be the element such that α(ξ) = ξ3. Then α is a
generator of G. If we let σ = α3, then σ is order 2 and H := 〈σ〉 is a normal subgroup of
index 3 in G. We let K := EH .

Let u ∈ K be arbitrary. Then u = a+ bξ+ cξ2 + dξ3 + eξ4 +hξ5. As σ ∈ H and K = EH ,
we have σu = u. Recall that σ = α3 so that

σ : ξ 7→ ξ6; ξ2 7→ ξ5; ξ3 7→ ξ4; ξ4 7→ ξ3; ξ5 7→ ξ2; ξ6 7→ ξ. (1)

Equating the coefficients of the same power we arrive at

u = a+ c(ξ2 + ξ5) + d(ξ3 + ξ4).

(Why is b = 0?) Clearly, ξ2 + ξ5 /∈ Q. It follows that K = Q(ξ2 + ξ5).

Example 7.5. Let E := Split(f(x) := x4 − 7;Q). We have E = Q(α, i) where α ∈ R is such
that α4 = 7. By standard arguments, we know |Gal (E/Q)| = |E : Q| = 8 and that the Galois
group is the dihedral group of order 8. Let σ ∈ Gal (E/Q) be the element of the Galois group
such that σ(α) = iα and σ(i) = i. Let τ ∈ Gal (E/Q) be such that τ(i) = −i and τ(α) = α.
Then σ4 = e = τ2 and τσ = σ3τ .

Let H := 〈τσ〉. We wish to find the fixed field of H. Let

E 3 u = u1 + u2α+ u3α
2 + u4α

3 + u5i+ u6αi+ u7α
2i+ u8α

3i.

We have
τσ(u) = u1 − u2α− u3α2 + u4iα

3 − u5i+ u6α+ u7α
2i+ u8α

3.

Therefore, τσ(u) = u iff Verify!

u3 = 0 = u5, u4 = u8, and u2 = −u6.
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Hence u ∈ EH is of the form

u = u1 + u2(α− αi) + u4(α
3 + α3i) + u7α

2i.

We observe that

(α− αi)2 = −2α2i and (α− αi)3 = −2(α3 + α3i).

It follows that u ∈ Q(α− iα) and that EH = Q(α− iα).

Example 7.6. Consider E := Split(x6 − 2;Q(ξ)) where ξ is a cube root of unity. Note that
Q(ξ) = Q(−ξ). Let α := 21/6. If σ ∈ Gal (E/Q(ξ)), then σ(α) = α(−ξ)j , 0 ≤ j ≤ 5 is the
generator of the Galois group. Let H :=

〈
σ2
〉
. Then EH := Q(

√
2, ξ).

Let E/F be an extension and let K be an intermediate field between F and E, that is,
F ⊂ K ⊂ E. Let H stand for a subgroup of Gal (E/F ). Let K denote the set of intermediate
fields of E/F and H, the set of subgroups of G. Consider the maps

Φ: K → H defined by K 7→ Gal (E/K)

and
Ψ: H → K defined by H 7→ EH

The so-called fundamental theorem of Galois theory relates these two maps when the ex-
tension E/F is a finite, separable and normal extension. The mapΦ is called the Galois
correspondence.

Theorem 7.7. Let E be a field and G a finite group of automorphisms of E. Let K be the
fixed field of G. The following are true:

(i) Each element of E is algebraic over K.
(ii) Let the G-orbit of α ∈ E be {α1, . . . , αk}. Then min(α,K) = (x− α1) · · · (x− αn).
(iii) E/K is a normal separable extension.
(iv) The extension E/K is finite and hence simple.
(v) To sum it up, the extension E/K is a simple, normal and separable extension such that

|E : K| is a divisor of |G|.
(vi) We have Gal (E/K) = G and |G| = |E : K|.

Proof. Let f(x) = (x − α1) · · · (x − αk). Since each element of G permutes αi’s, and hence
(x−αi)’s, the polynomial is invariant under G. Therefore its coefficients lie in K. This shows
that α is algebraic over K. We have proved (i).

Let g(x) ∈ K[x] be any polynomial such that g(α) = 0. We claim that g(αi) = 0 for all
1 ≤ i ≤ k. For, let σ ∈ G be such that σ(α) = αi. Then 0 = σ(g(α)) = g(σ(α)) = g(αi). It
follows that f divides g. (ii) is proved.

(ii) shows that the minimal polynomial of each element of K splits in E and has no
multiple roots. Hence the extension E/K is normal and separable. Hence (iii) is proved.

(iv) requires a bit of work. Let M be any field satisfying (a) K ≤M ≤ E and (b) M/K is
finite. Then M/K is separable since E/F is. Therefore, M = K(α) by the primitive element
theorem. Let m = deg min(α,K). We know that m = |M : K|. By (ii), we have |M : K|
the size of the G-orbit of α. In particular, |M : K| is a divisor of |G|. This is true for any
intermediate field K ≤M ≤ E with |M : K| finite.
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We now choose the intermediate field M so that |M : K| is the maximum. (This is possible
since such |M : K| are divisors of |G|.) We claim M = E. Let λ ∈ E. Then, by (i), λ is
algebraic over K. Hence |M(λ) : M | is finite. We have by the tower law,

|M(λ) : K| = |M(λ) : M | · |M : K|.

Maximality of |M : K| forces us to conclude that M(λ) = M . That is, if λ ∈ E, then
λ ∈ M . Thus E is a finite extension. Since it is a finite separable extension, it is simple by
the primitive element theorem. Thus (iv) is proved.

(v) is merely a summary of (i)–(iv).
We now prove (vi). We know from (iv) that E = K(α). Let p(x) = min(α,K) be of

degree n. Then |E : K| = deg p = n. We know that σ ∈ Gal (E/K) is determined by σ(α).
Now, σ(α) will be a root of p(x). Thus the number of distinct σ ∈ Gal (E/K) is at most the
number of roots of f , that is, deg p. But deg p = |E : K|. Hence we arrive at

|G| ≤ |Gal (E/K)| ≤ n = |E : K|.

Now, let f be as above in the proof of (i). Then n the degree of min(α,K) divides k, the
degree of f . Also, k (being the number of elements in the G-orbit of α) is a divisor of |H|.
We therefore obtain

|H| ≥ k ≥ n = |E : K|.
The two displayed inequalities lead us to the result.

Remark 7.8. If we assumed that E/F is a finite extension and H ≤ Gal (E/F ) in the last
theorem, then E is a simple normal and separable extension of the fixed field K := EH .

This is perhaps the standard version of the last theorem.

Theorem 7.9. Let E/F be a finite extension. Let H ≤ Gal (E/F ) and K := EH be the fixed
field of H. Then Gal (E/K) = H and |Gal (E/K)| = |H| = |E : K|.
Proof. Observe that Gal (E/F ) is finite. The result follows from the last theorem.

Remark 7.10. This theorem shows the Galois correspondence Φ: K 7→ Gal (E/K) from the
set of intermediate fields F ≤ K ≤ E to the set of subgroups of Gal (E/F ) is onto.

Definition 7.11. An extension E/F is said to be a Galois extension if it is normal and
separable. We shall deal only with finite Galois extensions.

Ex. 7.12. Let E/F be a finite Galois extension. Show that E = F (α) iff the G-orbit of α
has |G| number of elements.

Example 7.13. Let E := C(t) be the field of rational functions. Let σ(t) = 1/t. Then σ
extends to an automorphism of E with σ2 = 1. Let H = 〈σ〉. What is EH?

Clearly, t+ t−1 is fixed by H. Hence we obtain

C(t+ t−1) ⊂ EH ⊂ E. (2)

On the other hand, C(t) ⊂ C(t + t−1)(t) ⊂ C(t) so that we conclude that C(t) is obtained
from C(t+ t−1) by adjoining t.

What is min(t,C(t+ t−1)? Observe that t is a root of

(x− t)(x− t−1) = x2 − (t+ t−1)x+ 1 ∈ C(t+ t−1)[x].

Hence we arrive at |C(t) : C(t+ t−1)| ≤ 2. But by Theorem 7.9, we know that this degree is
2. It follows from the tower law and (2) that EH = C(t+ t−1).
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Theorem 7.14. Let E/F be a finite Galois extension and K be an intermediate field F ≤
K ≤ E. Then K is the fixed field of Gal (E/K). In an ugly notation, we have

K = EGal (E/K).

Proof. Let L be the fixed field of Gal (E/K). Then K ≤ L. We need to show that L ≤ K.
Let α /∈ K. If p(x) = min(α,K) ∈ K[x] is the minimal polynomial, then its degree is at least
2. (Why?) Since E/L is normal, all the roots of p(x) lie in E. Since E/K is separable, the
roots of p(x) are distinct. If β 6= α is another root of p(x), then there exists σ ∈ Gal (E/K)
with σ(α) = β. This means that any element outside K is moved by Gal (E/K). Hence
L ⊂ K.

Remark 7.15. The last result shows that the Galois correspondence Φ is one-one. For,
if K and L are intermediate fields having the same Galois groups, that is, Gal (E/K) =
Gal (E/L) = H ≤ Gal (E/F ), then K = L.

Corollary 7.16. Let E/F be a finite extension. Then E/F is a Galois extension iff F is the
fixed field of Gal (E/F ).

Proof. If E/F is Galois, then the fixed field of Gal (E/F ) is F by the last theorem.
If F is the fixed field of Gal (E/F ), then by Theorem 7.7, the extension E/F is normal

and separable and hence Galois.

Remark 7.17. In literature, sometimes, a Galois extension is defined as in the Corollary
above.

Corollary 7.18. Let E/F be a (finite) Galois extension. Then |Gal (E/F )| = |E : F |.

Proof. Notice that this is nothing but Theorem 6.6.
Follows from the last result and Theorem 7.9 (in which we take H = Gal (E/F ).

This corollary has interesting applications and helps us to ‘find’ Galois groups.

Example 7.19. We shall show that the Galois group of the splitting field of x3 − 2 over Q
is S3.

Let ξ be a primitive cube root of unity. Then Split(x3 − 2;Q) = Q(21/3, 21/3ξ, 21/3ξ2) =
Q(21/3, ξ). By Example 3.17), we have |Q(21/3, ξ) : Q| = 6. Hence |Gal (Q(21/3, ξ)/Q)| = 6.
By Corollary 6.5, it is a subgroup of S3. Hence the claim.

Ex. 7.20. Let E = Q(
√

2,
√

3). Then E/Q is a Galois extension. We have identified
the Galois group in Example 6.9 whose subgroups are easy to list. List them and find the
corresponding fixed fields.

Theorem 7.21. Let E/F be a Galois extension. Let F ≤ K ≤ E be an intermediate field.
Assume that Gal (E/K) is normal in Gal (E/F ). Then K/F is a normal extension.

Proof. Let an irreducible polynomial f(x) ∈ F [x] have a root α ∈ K. Since E/F is normal,
f(x) splits in E. Let β be another root of f . Then there exists σ ∈ Gal (E/F ) such that
σ(α) = β. We show that τ(β) = β for any τ ∈ Gal (E/K).

Since Gal (E/K) is normal, we have στσ−1 = τ1 ∈ Gal (E/K). Observe that

τ(β) = τ(σ(α)) = σ(τ1(α)) = σ(α) = β.

Thus, τ(β) = β for any τ ∈ Gal (E/K). Hence β ∈ EGal (E/K) = K, by Theorem 7.14.
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Before we embark on the main result of this section, we shall dispose of a simple observa-
tion.

Lemma 7.22. Let E/F be a finite normal extension. Let F ≤ K ≤ E and K/F is a normal
extension. Then there is a natural onto homomorphism from Gal (E/F ) onto Gal (K/F ) with
kernel Gal (E/K). Also, we have

Gal (K/F ) ' Gal (E/F )/Gal (E/K).

Proof. The basic observation is that if σ ∈ Gal (E/F ), then the restriction σ|K makes sense.
(See Lemma 3.21.) Let α ∈ K. Let p(x) = min(α, F ). Since E/F is normal, p(x) splits in E.
Since K/F is normal, and since α ∈ K, all the roots of p(x) lie in K, that is, the splitting of
p(x) takes place in K[x]. Now σ ∈ Gal (E/F ) will send α to a root of p(x0 and hence to an
element of K.

One easily verifies that the map σ 7→ σ|K is a group homomorphism.
We claim that this map is onto. For, let τ ∈ Gal (K/F ) be given. Since E/F is the

splitting field of some f(x) ∈ F [x], E is also the splitting field of f(x) when considered as an
element of K[x]. Hence τ extends to an F automorphism σ of E (by Theorem 3.9).

Note that we used the normality of K/F to show that the map σ 7→ σ|K is onto.
The next theorem, the main result of Galois theory asserts that the maps Φ and Ψ are

inverses of each other when the extension E/F is Galois.

Theorem 7.23 (Fundamental Theorem of Galois Theory). Let E/F be a Galois extension
and let Gal (E/F ) be its Galois group. The maps Φ: K → H and Ψ: H → K defined by

Φ: K 7→ Gal (E/K)

Ψ: H 7→ EH .

are inverses of each other.
Under the correspondence, we have

|E : K| = |Gal (E/K)| and |K : F | = |Gal (E/F ) : Gal (K/F )|.

Furthermore, the extension K/F is normal iff the corresponding subgroup Gal (E/K) is
normal. In such a case, we have Gal (K/F ) ' Gal (E/F )/Gal (E/K).

Proof. Follows from the results above.

Example 7.24. Let us look at Q(
√

2,
√

3) : Q, Q( 3
√

2, i) : Q and at Q( 4
√

2, i) : Q).

Example 7.25. Let E := Split(x4 − 2;Q) = Q(α, i) where α4 = 2. Let σ ∈ Gal (E/Q) be
such that σ(α) = iα and σ(i) = −i. Let H := 〈σ〉. If we write

E 3 u = u1 + u2α+ u3α
2 + u4α

3 + u5i+ u6iα+ u7iα
2 + u8α

3,

then σ(u) = u iff u = u1 + u2(α+ iα) + u4(α
3 − iα3) + u7iα

2.We note that iα2 ∈ Q(α+ iα) Verify!

and that α3 − iα3 ∈ Q(α+ iα). Hence EH = Q(α+ iα).
We can cut down the work if we observe that α+ iα is fixed under σ. Hence Q(α+ iα) ⊂

EH . If this inclusion is proper, then some other element of the Galois group must be in
Gal (E/Q(α+ iα). It is easy to check that no element other than e and σ does it.
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Example 7.26. We wish to find an irreducible f(x) ∈ Q[x] of degree 3 such that its splitting
field K is of degree 3 over Q. The basic idea is to exploit the Galois correspondence to find
such a K and then f .

We start with a degree 6 extension over Q and find a normal subgroup of order 2 in the
Galois group. The fixed field will be a degree 3 extension over Q.

Let ξ be a primitive 7th root of unity. Let E := Q(ξ). Then |E : Q| = 6 and G :=
Gal (E/Q) ' Z6 is cyclic. Let α ∈ G be the element such that α(ξ) = ξ3. Then α is a
generator of G. If we let σ = α3, then σ is order 2 and H := 〈σ〉 is a normal subgroup of
index 3 in G. If we let K := EH , then K is a normal extension of Q of degree 3 (by Galois
correspondence). Therefore, there exists an irreducible polynomial f(x) ∈ Q[x] of degree 3
such that K = Split(f(x);Q).

We need to find f(x) explicitly. Since K is a simple extension, if we find a primitive
element, then f(x) is the minimal polynomial of this primitive element.

Let u ∈ K be arbitrary. Then u = a+ bξ+ cξ2 + dξ3 + eξ4 +hξ5. As σ ∈ H and K = EH ,
we have σu = u. Recall that σ = α3 so that

σ : ξ 7→ ξ6; ξ2 7→ ξ5; ξ3 7→ ξ4; ξ4 7→ ξ3; ξ5 7→ ξ2; ξ6 7→ ξ. (3)

Equating the coefficients of the same power we arrive at

u = a+ c(ξ2 + ξ5) + d(ξ3 + ξ4).

(Why is b = 0?) Clearly, ξ2 + ξ5 /∈ Q. Since |K : Q| = 3, it follows that K = Q(ξ2 + ξ5).
What is the minimal polynomial f(x) of θ = ξ2 + ξ5? The roots are f are the distinct images
of θ under α. The displayed equation (3) makes our life easy! We obtain

f(x) = (x− (ξ2 + ξ5))(x− (ξ4 + ξ3))(x− (ξ + ξ6))

= −ξ15 − ξ14 + xξ11 − ξ12 + xξ10 − ξ11 + 2xξ9 − ξ10 + 2xξ8 − ξ9 − x2ξ6

− x2ξ5 + 2xξ6 − ξ7 − x2ξ4 + 2xξ5 − ξ6 − x2ξ3 + xξ4 − x2ξ2 + xξ3 + x3 − x2ξ
= −ξ15 − ξ14 − ξ12 − ξ11 − ξ10 − ξ9 − ξ7 − ξ6 −

(
ξ6 + ξ5 + ξ4 + ξ3 + ξ2 + ξ

)
x2 + x3

+
(
ξ11 + ξ10 + 2 ξ9 + 2 ξ8 + 2 ξ6 + 2 ξ5 + ξ4 + ξ3

)
x

= x3 + x2 − 2x− 1.

We shall indicate another method of finding this polynomial. Using the standard trigono-
metric identities (use θ = 2π

7 ), we obtain the following:

ξ + ξ6 = 2 cos
2π

7

ξ2 + ξ5 = 2 cos
4π

7
= 4 cos2

2π

7
− 2

ξ3 + ξ4 = 2 cos
6π

7
= 8 cos3

2π

7
− 6 cos

2π

7
.

We now use the cyclotomic equation

0 = 1 + (ξ + ξ6) + (ξ2 + ξ5) + (ξ3 + ξ4)

= 1 + 2 cos
2π

7
+ 4 cos2

2π

7
− 2 + 8 cos3

2π

7
− 6 cos

2π

7
.

Thus cos θ is a root of the polynomial x3 + x2− 2x− 1. This polynomial is irreducible by
the rational roots theorem.
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8 Solvability by Radicals

Topics: Defn of a Radical extension; An improved definition which includes a primitive n-th
root of unity for n� 0; Galois group of a radical extension is solvable; Existence of a radical
extension which is also normal (assuming the existence of a radical extension); F ≤ K ≤ L
where K = Split(f ;F ) and L is a normal radical extension. Then Gal (K/F ) is a quotient of
Gal (L/F ). (To establish surjectivity of the map σ 7→ σ|K , we need L/F normal.);

Example of a quintic polynomial which is not solvable.
Convention: In this chapter, we shall assume all out fields are of zero characteristic.

Definition 8.1. An extension E/F is sadi to be a radical extension if there is a tower of
fields

F = F0 ⊂ F1 ⊂ · · · ⊂ Fk = E,

such that there exist an αi ∈ Fi and an integer mi with αmii ∈ Fi−s for 1 ≤ i ≤ k.

Example 8.2. Q(
√

2 +
√

2)/Q is a radical extension:

Q = F0 ⊂ F1 = Q(
√

2) ⊂ F2 = Q(

√
2 +
√

2).

Note that α1 =
√

2 and α2 =
√

2 +
√

2. We have m1 = m2 = 2 and α2
2 = 2 +

√
2 ∈ Q(

√
2).

Ex. 8.3. Any radical extension is a finite extension.

Remark 8.4. Let us say we want to consider the extension Q(
5
√

7−
√

52). The expression
5
√

7−
√

52 stands for a complex 5th root of 7 −
√

52. Which one? To avoid the ambiguity
and also for other technical reason, it is expedient to include a primitive m-th root of unity
in the definition of a radical extension for some m � 0. For example, in this example, if we
include ξ, a primitive fifth root of unity, and consider the radical extension

Q ⊂ Q(ξ) ⊂ Q(ξ)

(
5

√
7−
√

52

)
there is no ambiguity which of the five roots is included.

How to do this for a general radical extension? Keep the notation as above. Let m be the
least common multiple of m1, m2, . . . ,mk. Let ξ = ξm be a primitive m-th root of unity. For
each i, we let Ei := Fi(ξ). Then for each i

Ei = Fi(ξ) = Fi−1(αi)(ξ) = Fi−1(αi, ξ) = Fi−1(ξ)(αi) = Ei−1(αi).

Since αmii ∈ Fi−1 ⊂ Ei−1, we see that

F ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Ek

is a radical extension that contains the given radical extension E/F .
In the next theorem, we shall assume that any radical extension is of the form E =

F (ξ, α1, . . . , αk) where αmii ∈ Fi−1 := F (ξ, α1, . . . , αi−1) and where m is the LCM of the mi’s.

Theorem 8.5. Let E/F be a radical extension. Assume that E = F (ξ, α1, . . . , αk) where
αmii ∈ Fi−1 := F (ξ, α1, . . . , αi−1), where m is the LCM of the mi’s and ξ is a primitive m-th
root of unity. Then Gal (E/F ) is solvable.
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Proof. We keep the notation above. Corresponding to the chain of fields

F ⊂ E0 ⊂ E1 ⊂ · · · ⊂ Ek,

we get a chain of subgroups

G = Gal (E/F ) ⊆ Gal (E/E0) ⊇ · · · ⊇ Gal (E/Ek−1) ⊇ Gal (E/Ek) = {e}.

To prove that Gal (E/F ) is solvable, it suffices to show that
(a) ghg−1h−1 ∈ Gal (E/E0), for all g, h ∈ Gal (E/F ), and
(b) ghg−1h−1 ∈ Gal (E/Ei+1), for all g, h ∈ Gal (E/Ei) for 0 ≤ i ≤ k − 1.

Let us prove (a). Since E0 = F (ξ), we need to show that σ := ghg−1h−1(ξ) = ξ. Since
σ(ξ) must again be a root of xm− 1 and any root of this polynomial is of the form ξj , we see
that σ(ξ) = xij for some j modulo m. Let g−1(ξ) = ξi and h−1(ξ) = ξj . We easily see that
σ(ξ) = ξ. Thus, we conclude that σ ∈ Gal (E/E0).

We now prove (b). Let g, h ∈ Gal (E/Ei). Recall that Ei+1 = Ei(αi+1) with a = α
mi+1

i+1 ∈
Ei. It follows that g, h ∈ Gal (E/Ei) must send αi+1 into some root of the polynomial
xmi+1 − a. So, we conclude that g(αi+1) = αi+1ξ

r and h(αi+1) = αi+1ξ
s so that g−1(αi+1) =

αi+1ξ
r and h−1(αi+1) = αi+1ξ

s. Since g and h are identity on Ei, they map any power of ξ
to the same power of ξ. A trivial compuation now shows that

ghg−1h−1(αi+1) = (ghg−1)(αi+1ξ
s) = (gh)(αi+1ξ

rξs) = g(ξrαi+1) = αi+1.

This shows that ghg−1h−1 is the identity on Ei(αi+1) = Ei+1 and hence lies in Gal (E/Ei+1).

Definition 8.6. Let f(x) ∈ F [x]. We say that f is solvable by radicals if the splitting field
K = Split(f(x);F ) is contained in a radical extension E/F .

Remark 8.7. The main result of this section is that if a polynomial f(x) ∈ F [x] is solvable
by radicals, then Gal (K/F ) is a solvable group. To deduce this from Theorem 8.5, we shall
show that there exists a radical extension L/F which is normal and which contains K. (See
Theorem 8.9). Then Gal (K/F ) is a homomorphic image of the Galois group Gal (L/F ) by
Lemma 7.22

So what remains to be shown is the existence L as specified (in Remark 8.7) given that f
is solvable by radicals. This is achieved by a technical lemma.

Lemma 8.8. Let F , E and L be fields of characteristic 0 with

F ⊂ E ⊂ L = E(α) and αk ∈ E.

If |L : F | is finite and E/F is normal, then there exists an extension M/L which is a radical
extension of E and normal extension of F .

Proof. Let E := Split(f(x);F ). Let g(x) := min(α, F ). Let M := Split(f(x)g(x);F ). Then
M/F is normal. Note that F ≤ E ≤ L ≤ M . (For, L = E(α) and E is obtained by
adjoining the roots of f .) Let α1, . . . , αk) be the roots of g. For each 1 ≤ i ≤ k, thanks to
Proposition 6.3, there exists σi ∈ Gal (M/F ) such that σi(α) = αi. Let αk = a ∈ E. Observe
that, since E is a splitting field and a ∈ E,

αki = σi(α)k = σi(α
k) = σi(a) ∈ E,
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by Lemma 3.21. Since E ≤ E(α1, . . . , αi−1), we have

E ⊆ L = E(α1) ⊆ E(α1, α2) ⊆ . . . ⊆ E(α1, . . . , αk) = M.

Thus M/F is normal and a radical extension of F as per the original definition.

Theorem 8.9. Let f(x) ∈ F [x] be solvable by radicals. Then there exists a normal radical
extension L/F that contains K = Split(f(x);K).

Proof. Let K be contained in a radical extension

F = E0 ⊆ E1 ⊆ . . . ⊆ Ek,

where Ei = Ei−1(αi) and αmii ∈ Ei−1 for 1 ≤ i ≤ k.
Let us apply the last lemma with E = F , L = E1 and α = α1. We then get a normal

extension M1 of F that contains E1. By hypothesis, αm2
2 ∈ E1 ⊆M1. We now apply the last

lemma where E = M1, α = α2 and L = M1(α2). We get a normal extension M2 of F that is
a radical extension of M1 and hence a radical extension of F . Also, we have E1(α2) ⊂ M2.
We continues this process to arrive at a normal radical extension Mk of F that contains Ek
and hence K.

If we want the radical extension as in Remark 8.4, we can adjoin the a primitive m-th
root of unity to M as in the remark. Note that M(ξ) is the splitting field of f(x)g(x)(xm−1)
and hence is normal radical extension.

Theorem 8.10. Let f(x) ∈ F [x] be solvable by radicals. Let K = Split(f(x);F ). Then
Gal (K/F ) is solvable.

Proof. We may assume that K is contained in a normal radical extension. By adjoining ξ,
a primitive m-th root of unity as detailed in Remark 8.4, we obtain a radical extension L
of F which is normal over F and contains K. This extension L satisfies the hypothesis of
Theorem 8.5 and hence Gal (L/F ) is solvable. By Lemma 7.22, Gal (K/F ) is a quotient of
Gal (L/F ) and hence Gal (K/F ) is solvable.

We now use this theorem to exhibit polynomials of degree greater than or equal to 5,
which are not solvable by radicals.

Proposition 8.11. Let p be a prime. If H is a subgroup of Sp which contains a transposition
and a cycle of order p, then H = Sp.

Proof. Assume τ := (12) and σ := (12 . . . n) lie in H ≤ Sn. We show that H = Sn.
Observe that στσ−1 = (23), σ(23)σ−1 = (34) and so on. Thus all elements of the from

(k, k + 1) ∈ H.
Observe that (12)(23)(12) = (13) ∈ H, (13)(34)(13) = (14) ∈ H. In general, (1k) ∈ K.
Observe that (1r)(1s)(1r) = (rs) ∈ H. Thus all transpositions lie in H. Hence H = Sn.
Now let us assume that n = p and that H ≤ Sp is such that H contains a transposition

and a p-cycle. We show that H = Sp.
Let τ be a transposition. By relabeling, we may assume that τ = (12). Let σ be a p-cycle.

We may assume WLOG that σ = (1 . . . 2 . . .), that is, it starts with 1. Let j be the number
of elements that lie between 1 and 2 in σ. Note that 0 ≤ j ≤ p − 2. Consider f := σj+1.
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Since 1 ≤ j + 1 ≤ p− 1 and since the order of σ is p, we find that f is not the identity.1 We
have f(1) = 2 and hence f = (12a3 . . . ap). Note that f ∈ H. We may therefore assume σ is
already of this form.

Let π :=

(
1 2 a3 . . . ap
1 2 3 . . . p

)
. Then πσπ−1 = (12 . . . p). Also, π(12)π−1 = (12). Thus

the subgroup πHπ−1 has (12) and (12 . . . p). Hence πHπ1 = Sp by the first part. It follows
that H = Sp.

Another way of showing directly that Gal (E/Q) ' Sp is to observe that the Galois group
acts transitively on the set of roots and use the following fact:

Let H ≤ Sp be such that H acts transitively on X := {1, . . . , p} and contains a transpo-
sition. Then H = Sp.

To see this, we define an equivalence relation on i ∼ j iff the transposition (ij) ∈ H.
To see the transitivity of the relation, observe that (ij)(jk)(ij) = (ik). Let [i] denote the
equivalence class of i ∈ X. We claim that all equivalence classes have the same number of
elements. For, if j ∈ X, then there exists σ ∈ H such that σi = j. Nor, if k ∈ [i], then

σ(i, k)σ−1 = (σ(i), σ(k)) = (j, σ(k)) ∈ H.

Thus, σ(k) ∈ [j]. Hence, σ([i]) ⊂ [j] and hence |[i]| ≤ |[j]|. Interchanging i and j proves
the claim. We have now partition of X (whose cardinality is p) into pairwise disjoint subsets
(namely, the equivalence classes). This forces us to conclude that X is a single equivalence
class. In other words, every transposition (ij) ∈ H. It follows that H = Sp.

Example 8.12. Let f(x) ∈ Q[x] be irreducible of prime degree p. Assume that f has p− 2
real roots and 2 complex roots. Let E := Split(f(x);Q). Then Gal (E/Q) ' Sp.

Since |Gal (E/Q)| is divisible by p (Why?), by Cauchy’s theorem, there exists an element of
order p in Gal (E/Q). If we consider the Galois group as a subgroup of Sp (by Corollary 6.5),
we infer that it has a p-cycle.

Since f has only two roots, the complex conjugation restricts to an automorphism of
E which swaps the complex roots and leaves all the other roots invariant. This means the
subgroup Gal (E/Q) ≤ Sp has a transposition. Thus Gal (E/Q) ≤ Sp has a transposition and
a p-cycle. By Proposition 8.11, we deduce that Gal (E/Q) is Sp.

Example 8.13. Consider the quintic polynomial f(x) = x5− 6x+ 3 ∈ Q[x]. It is irreducible
over Q by Eisenstein criterion. We have

f(−2) = −17, f(−1) = 8, f(1) = −2 and f(2) = 23.

Using the intermediate value theorem, we conclude that f has at least 3 real roots. If f has
four real roots, then Rolle’s theorem says that there will be at least 3 distinct real roots of
f ′ and hence at least two distinct roots of f ′′. Since f ′′ = 20x3, α = 0 is the only (though
multiple) root of f ′′. So we conclude that f has exactly three real roots and 2 complex roots.
Hence the Galois group of f is S5, which is not solvable. We conclude that f is not solvable
by radicals over Q.

Ex. 8.14. Show that 2x5 − 10x+ 5 ∈ Q[x] is not solvable by radicals.

1This is the only place where we use the fact that p is a prime!
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Example 8.15. Let p be an odd prime and that 2 ≤ n ∈ N. Then the polynomial f(x) =
x5 − npx+ p is not solvable by radicals.

The polynomial f(x) is irreducible over Q by Eisenstein criterion. The roots of the deriva-
tive 5x4 − np are ± 4

√
np/5. Since f ′ has only two roots, Rolle’s theorem says that f has at

most three real roots.
When x� 0, then f(x) < 0 and f(0) = p > 0. So, there is a negative real root.
We have f(1) < 0. So, f has a root between 0 and 1.
Since for x � 0, f(x) > 0. So there is a real root between 1 and such an x. We

conclude that f has exactly 3 real roots. Proposition 8.11 asserts that Gal (K/Q) is S5. From
Theorem 8.10, it follows that f is not solvable by radicals.

Example 8.16. For each n ≥ 5 there exist polynomials f(x) ∈ Q[x] of degree n which are
not solvable by radicals.

Let p(x) be any quintic polynomial whose Galois group is S5. Let f(x) = xn−5p(x). Let
K be the splitting field of f over Q. Then Gal (K/Q) contains a subgroup that is isomorphic
to S5. It follows that Gal (K/Q) is not solvable and therefore the polynomial is not solvable
by radicals.

Example 8.17. Any polynomial of degree less than 5 is solvable by radicals.

8.1 Solvable Groups

Topics: Solvable groups: Definition, examples, subgroups and quotients are solvable, A5 is
not solvable.

Definition 8.18. A group G is said to be solvable if it has a chain of subgroups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn−1 ⊃ Gn = {e},

such that each Gi is normal in its immediate predecessor Gi−1 (for 1 ≤ i ≤ n) and the quotient
Gi−1/Gi is abelian.

Example 8.19. Every abelian group is solvable.

Example 8.20. Let H := 〈(123)〉 ≤ S3. Then S3 ⊃ H ⊃ {e} shows that S3 is solvable.

Example 8.21. Show that the dihedral group D2n is solvable.

Theorem 8.22. Let n ≥ 5. Then Sn is not solvable.

Proof. Assume, on the contrary, that Sn is solvable. Let

Sn = G0 ⊃ G1 ⊃ · · · ⊃ Gn = {e},

as required by the definition. Let (a1a2a3) be any 3-cycle. Choose a4, a5 distinct from
a1, a2, a3. Since G1 contains the commutator of G0, we have

(a1a2a4)(a1a3a5)(a1a2a4)
−1(a1a3a5)

−1 =
(
(a1a2a4)(a1a3a5)(a1a2a4)

−1) (a1a5a3)

= (a2a3a5)(a1a5a3)

= (a1a2a3) ∈ G0.

Thus any 3-cycle of Sn lies in G1. Repeating this argument for the pair (G1, G2) in place of
(G0, G1), we see that G2 contains all 3-cycles. Proceeding this way, we find that Gn = {e}
contains all 3-cycles!
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Theorem 8.23. A group is solvable iff there is a chain of groups

G = G0 ⊃ G1 ⊃ G2 ⊃ · · · ⊃ Gn−1 ⊃ Gn = {e},

such that for any x, y ∈ Gi we have aba−1b−1 ∈ Gi+1 for 0 ≤ i ≤ n− 1.

Proof. The proof depends on the following well-known facts: (i) If G/H is abelian, then the
commutator subgroup [G,G] (generated by {xyx−1y−1 : x, y ∈ G} is a subgroup of H.
(ii) If K ≤ G is such that the commutator subgroup [G,G] ⊂ K, then K is normal in G. To
see this, let x ∈ K and a ∈ G. Observe that

K 3 axa−1x−1 = (axa−1)x−1 and x ∈ K.

Let G be solvable. Keep the notation of Definition 8.18. Since Gi/Gi+1 is abelian, in view
of (i), it follows that xyx−1y−1 ∈ Gi+1 for 0 ≤ i ≤ n− 1.

To see the converse, we need only show that the subgroups Gi+1 is normal in Gi. This is
an immediate consequence of (ii).

Theorem 8.24. Every homomorphic image of a solvable group is solvable.

Proof. Easy. If we keep the notation of the definition (or as in Theorem 8.23), then the
chain H0 ⊃ H1 ⊃ · · · ⊃ Hn where Hi := f(Gi) is as required by the definition (or as by
Theorem 8.23).

We can prove a result stronger than the last.

Theorem 8.25. Let N E G. Then G is solvable iff N is solvable and the quotient group
G/N is solvable.

Proof. Let G be solvable. We use the standard notation. Let Ni := N ∩Gi. Then it is easy
show that the chain N0 ⊃ N1 ⊃ · · · ⊃ Nn satisfies the conditions of Theorem 8.23 and hence
N is solvable.

Since G/N is the homomorphic image under the quotient map π : G → G/N , solvability
of G/N follows from Theorem 8.24.

To prove the converse, let N0 ⊃ N1 ⊃ · · · ⊃ Nr = {e} be chain assured by the solvability
of N via Theorem 8.23.

Similarly, if we let H := G/N , we have a chain H0 ⊃ N1 ⊃ · · · ⊃ Hs = {eH}. This gives
rise to a chain G0 ⊃ G1 ⊃ · · · ⊃ Gs = N where Gi := π−1(Hi). To this we adjoin the chain
for N to get

G0 ⊃ G1 ⊃ · · · ⊃ Gs = N = N0 ⊃ N1 · · ·Nr = {e}.

This chain satisfies the conditions of Theorem 8.23.

Note: I plan include the following topics: (i) Symmetric functions, (ii) Cyclotomic polyno-
mials, (iii) Special case of Primes in AP, (iv) Inverse Galois theory: Finite abelian groups as
galois groups of extensions over Q. Possibly another 10 pages and quite probably by the end
of December 2014!
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