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F stands for a field in the sequel.

1 Polynomial Ring F [x]

Topics: Reducible and irreducible; Various facts such as Euclidean domain, Irreducibility
criterion such as Eisenstein’s.

Theorem 1 (Division Algorithm). Let F be a field, and let f ∈ [F [x] be a nonzero polynomial
with coefficients in F . Then given any polynomial g ∈ F [x], there exist unique polynomials
q, r ∈ F [x] such that g = fq + r with either r = 0 or deg r < deg f .

Corollary 2. The polynomial ring F [x] is a PID.

Definition 3. Let f1, . . . , fk ∈ F [x]. They are said to be coprime or relatively prime if a
polynomial q divides each fj , then q is a constant.

Proposition 4. Let fj ∈ F [x], 1 ≤ j ≤ k, be coprime. Then there exist gj ∈ F [x], 1 ≤ j ≤ n,
such that

f1(x)g1(x) + · · ·+ fk(x)gk(x) = 1.

Definition 5. A non-constant polynomial f ∈ F [x] is said to be irreducible over F if
q ∈ F [x] divides, then q is a constant.

Proposition 6. Let f ∈ F [x] be irreducible. Let f divide gh where g, h ∈ F [x]. The either f
divides g or f divides h.

Theorem 7. Let f ∈ F [x] be irreducible. Then the quotient ring F [x]/(f) is a field.

Theorem 8 (Gauss Lemma). A polynomial f ∈ Z[x] is irreducible over Q iff it is irreducible
in the ring Z[x], that is, it cannot be expressed as a product of polynomials in Z[x] of lower
degree.

Theorem 9 (Eisenstein’s Irreducibility Criterion). Let f = a0 +a1x+ · · ·+anx
n ∈ Z[x]. Let

p ∈ N be a prime. Assume that (i) p does not divide an, (ii) p divides aj, 0 ≤ j ≤ n− 1, and
(iii) p2 does not divide a0. Then f is irreducible over Q.
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Ex. 10. Extend the last theorem as follows. Let R be a ring, and P a prime ideal of R. Let
f(x) = a0 + a1x+ · · ·+ anx

n ∈ R[x]. Assume that (i) ai ∈ P for 0 ≤ i < n, (ii) an /∈ P and
(iii) a0 /∈ P 2, the product ideal. Then f is irreducible in R[x].

Ex. 11. Show that the polynomials (i) x2 + 8x− 2 and (ii) x2 + 6x+ 12 are irreducible over
Q. Are they irreducible over R? Over C?

Ex. 12. This observation is needed when we want to transform a given polynomial into one
to which Eisenstein criterion may be applied.

Let a ∈ R∗ and b ∈ R, an integral domain. Then f(x) s irreducible in R[x] iff g(x) :=
f(ax+ b) is irreducible in R[x].

Apply the transformation x 7→ x + 1 to establish th irreducibility of f(x) = x4 + 4x3 +
10x2 + 12x+ 7 ∈ Z[x].

Ex. 13. Φp(x) is irreducible. The key observation is that Φp(x) = xp−1
x−1 . Now look at

g(x) = Φp(x + 1) =
∑p−1

r=0

(
p
r

)
xr. Eisenstein criterion applied to g yields the irreducibility of

g.

Ex. 14. Φp2(x) := xp
2−1

xp−1 is irreducible. Apply the trick of the last exercise.

Ex. 15. Let R be an integral domain. Then f(x) = a0 + · · ·+anx
n with a0 6= 0 is irreducible

over R iff the reciprocal polynomial f̃(x) defined by f̃(x) = xnf(1/x) = a0x
n +a1x

n−1 + · · ·+
an−1x+ an is irreducible over R.

Use this observation to prove the irreducibility of the following polynomials: (i) 2x4 +
4x2 + 4x+ 1 and (ii) 5x7 + 4.

Theorem 16 (Rational Roots Theorem). Let f(x) = anx
n + · · · + a0 ∈ Z[x]. Assume that

ana0 6= 0. If r/s ∈ Q (in lowest terms) is a root of f(x), then r|a0 and s|an.

Corollary 17. If f(x) ∈ Z[x] is monic, then any rational root must be an integer dividing
a0.

Ex. 18. Show that 3 is the only rational root of x3 − 2x2 − 2x− 3.

Ex. 19. Show that f(x) = x5 + 9x3 + 2 has rational roots. Show that it has only one ral
root in (−1, 0).

Ex. 20. Show that f(x) = x3+ax2+bx+1 ∈ Z[x] is reducible iff either a = b or a+b+2 = 0.

Ex. 21. Show that x4 + 2x2 + 1 ∈ Q[x] is irreducible. Hint: Use the rational roots theorem
to show that it has no linear factors. Use Gauss lemma to show that if it were reducible, then
the irreducible factors are quadratic, say, f(x) = (x2 + ax + 1)(x2 + bx + 1). Compare the
coefficients to arrive at equations which have no integer solutions.

Ex. 22. Show that f(x) = x2 − 8x− 2 is irreducible over Q.

Ex. 23. Show that f(x) = x3 + 3x2 − 8 is irreducible over Q.

Ex. 24. Show that x4 − 10x2 + 1 is irreducible in Q[x].

Ex. 25. Show that the polynomial x2 + x+ 1 is irreducible in Z3[x].

Ex. 26. Show that f(x) = 4x3 − 3x + 1
2 ∈ Q[x] is irreducible in two ways: one using the

rational root theorem and the other applying Eisenstein criterion to f(1+x2 ).
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2 Extension of Fields

Topics: Algebraic element, minimal polynomial of an algebraic element, algebraic extension,
degree of extension, finite extensions, tower theorem: [L : F ] = [L : K][K : F ], Kronecker’s
theorem, Adjunction of roots. K(α) = K[α] if α is algebraic over K.

Definition 27. Let F be a field. An extension E/F is an imbedding of F into some field E,
in other words, F is a ‘subfield’ of E, then we say that E is an extenion of F and write it as
E/F (read as extension field E over F ).

Let E/F be an extension of F . Then E is a vector space over F in an obvious way.
The degree of the extension, denoted by [E : F ] or by |E : F | is by definition dimF E, the
dimension of the vector space E over the underlying field F .

The extension E/F is finite if [E : F ] is finite.

Let E/F be an extension. Let S ⊂ E. Then F (S) denotes the smallest subfield of E
containing F and S. We then say that F (S) is the field obtained from F by adjoining S.

If S = {α1, . . . , αk}, we denote F (S) by F (α1, . . . , αk).

A field extension E/F is said to be simple if E = F (α) for some α ∈ E.

Example 28. Let F = Q and E = R or E = C. Then E/F is an extension, which are not
finite extensions.

C/R is a simple extension.

Example 29. Let E be any field and F its prime subfield. Then E/F is an extension. (It
may happen E = F !)

Example 30. Let F be any field and E := F (x), the field of rational functions on F . Then
E/F is a simple extension.

Example 31. Let F := Q and E := Q+
√

2Q := {a+b
√

2 : a, b ∈ Q} ⊂ R. It is easy to check
that E is a subfield of R and that E/F is an extension. (What is the inverse of a+ b

√
2?)

Theorem 32 (Tower Law). Let E/F and K/E be extension fields. Then the extension K/F
is finite iff the extensions E/F and K/E are finite and we have [K : F ] = [K : E][E : F ].

Proposition 33. Let E/F be a simple extension, say, E = F (α). Then precisely, one of the
following holds:

(i) There does not exist any nonzero-polynomial f ∈ F [x] with f(α) = 0.
(ii) There exists a unique monic polynomial f ∈ F [x] of least degree with f(α) = 0.

Definition 34. Let E/F be an extension and α ∈ E. Then α is said to be algebraic over
F if there exists 0 6= f ∈ F [x] such that f(α) = 0. The extension E/F is algebraic if each
element α ∈ E is algebraic over F .

An element α ∈ E is transcendental over F if it is not algebraic over F .

Proposition 35. Any finite extension E/F is algebraic.
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Proposition 36 (Minimal polynomial of an algebraic element). Let E/F be an extension
and α ∈ E be algebraic over F . Then there exists a unique irreducible monic polynomial
mα = mα,F = min(α, F ) ∈ F [x] with the following property: f ∈ F [x] is such that f(α) = 0,
iff mα divides f .

Definition 37. The polynomial mα of the last proposition is said to be the minimal polyno-
mial of α over F .

Theorem 38. A simple extension F (α)/F is finite iff α is algebraic over F . Also, in such a
case, we have [F (α) : F ] = degmα.

Corollary 39. A field extension E/F is finite iff there exist α1, . . . , αk ∈ E such that E =
F (α1, . . . , αk) and each αj is algebraic over F .

Ex. 40. Find the degree and a basis for the given field extension: (a) Q(
√

2,
√

3) : Q, (b)
Q(
√

2,
√

3.
√

18) : Q, (c) Q(
√

2, 3
√

2) : Q, (d) Q(
√

2
√

3) : Q, (e) Q(
√

2,
√

3) : Q(
√

2 +
√

3), (f)
Q(
√

2,
√

6 +
√

10) : Q(
√

3 +
√

5).

Ex. 41. Let p1, . . . , pn be n-distinct positive prime numbers. Let F := Q(
√
p1, . . . ,

√
pn). Let

q1, . . . , qr be distinct primes none of which appear in the list {p1, . . . , pn}. Then
√
q1 · · · qr /∈ F .

Ex. 42. Let p and q be distinct primes. Show that Q(
√
p,
√
q)/Q is of degree 4. Using

induction show that [Q(
√
p1, . . . ,

√
pn) : Q] = 2n.

Ex. 43. Let E/F be a finite extension. Assume that R be a subring F ⊂ R ⊂ E. Show that
R is a field.

Ex. 44. Show that a finite extension of prime degree is a simple extension.

Ex. 45. Let a, b ∈ Q. Assume that
√
a+
√
b 6= 0. Show that Q(

√
a+
√
b) = Q(

√
a,
√
b).

Ex. 46. Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Ex. 47. Find the degrees of the following extensions: (i) Q( 3
√

2, i) : Q, (ii) Q(
√

2,
√

3)/Q.

Ex. 48. Let α ∈ C be a root of the polynomial x2 + x+ 1 ∈ Q[x]. Show that α2− 1 6= 0 and

that α2+1
α2−1 ∈ Q(α) is 1+2α

3 .

Ex. 49. Let a, b ∈ Q. Find the minimal polynomial of a+ b
√

2.

Ex. 50. Let E/F be an extension of degree 2. Show that E = F (α) where α ∈ E \ F is
arbitrary element with deg min(α, F ) is 2.

Ex. 51. Show that f(x) = x3 +x+1 ∈ Q[x] is irreducible. Let α ∈ C be a root of f . Express
1/α as a polynomial in α.

Ex. 52. (i) Show that Q(
√

2,
√

3) = Q(
√

2 +
√

3).
(ii) Show that {1,

√
2,
√

3,
√

6} is a Q-basis of Q(
√

2,
√

3).
(iii) Show that min(

√
2 +
√

3,Q) = x4 − 10x2 + 1.

Ex. 53. Keep the notation of the last exercise. (a) Show that
√

3 /∈ Q(
√

2). (b) Find
min(

√
3 +
√

2,Q(
√

3)).
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Ex. 54. Consider the extension C/Q. Find the minimal polynomial of the following elements:
(i)
√

2, (ii)
√
−1, (iii)

√
2 +
√

3, (iv) ζ, a primitive root of unity where p is a prime and (v)
ζ6, a primitive sixth root of unity.

Ex. 55. Given α ∈ C, find an f(x) ∈ Q[x] such that f(α) = 0. (a) 1 +
√

3, (b)
√

2 +
√

3, (c)√
1 + 3
√

2 (d) 1 + i, and (e)
√

3
√

2− i.

Ex. 56. Let CharF 6= 2. Assume that E = F (α, β) such that α2 = a ∈ F and β2 = b ∈ F
with a 6= b. Show that E = F (α+ β).

Ex. 57. Let E/F be finite with |E : F | = n. Let p(x) ∈ F (x) be irreducible of degree m.
Show that if m does not divide n, then p has no root in E.

Ex. 58. Let E/F be an extension and let α ∈ E be algebraic over F . Show that the subfield
F (α) = {p(α) : p ∈ F [x]}.

Ex. 59. Let E/F be an extension with α ∈ E. Show that the following are equivalent:
(i) α is algebraic over F .
(ii) The evaluation map p 7→ p(α) from F [x] to E has nonzero kernel.
(iii) F (α)/F is a finite extension.

Ex. 60. Let F ≤ E ≤ K be fields. The extensions need not be finite. Show that K/F is
algebraic iff K/E is algebraic and E/F is algebraic.

Ex. 61. Let F ≤ E ≤ K be a tower of fields. Let α ∈ K be such that F (α) : F is a finite
extension. Show that |E(α) : E| ≤ |F (α) : F |.

Ex. 62. Let E/F be an extension, αj ∈ E, 1 ≤ j ≤ n be algebraic over F . Show that
F (α1, . . . , αn)/F is a finite extension.

Ex. 63. Let E/F be an extension. Assume that α, β ∈ E are algebraic over F . Show that
α± β, αβ and α/β (if β 6= 0) are algebraic over F .

Ex. 64. Let E/F be an extension. Let F be the set of all elements of E which are algebraic
over F . Show that F is a subfield of F . (F is called the algebraic closure of F in E.)

Let Q stand for the algebraic closure of Q in C. Show that Q is not a finite extension of
Q.

Ex. 65. Let E/F be a finite extension. Assume that for any two subfields K1,K2 of E either
K1 ⊂ K2 or K2 ⊂ K1. Show that E/F is a simple extension.

Ex. 66. Let E = F (α) be algebraic over F with [F (α) : F ] being odd. Show that F (α) =
F (α2).

Ex. 67. Let E/F be a finite extension of degree n. If F is finite with q elements, then E has
qn elements.

Ex. 68. Exhibit an irreducible degree 3 polynomial in Z3[x]. Hence conclude that there
exists an field of 27 elements.

Ex. 69. Show that there exist finite fields of p2 elements for every prime p ∈ N.
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Ex. 70. Let α ∈ E/F be transcendental over F . Show that any β ∈ F (α)\F is transcendental
over F .

Ex. 71. Let E/F be an extension. Let α, β ∈ E. Assume that α is transcendental over F
but algebraic over F (β). Show that β is algebraic over F (α).

Ex. 72. Let α, β be transcendental numbers. Which of the following are true?
(a) αβ is transcendental.
(b) Q(α) is isomorphic to Q(β).
(c) αβ is transcendental.
(d) α2 is transcendental.

Ex. 73. Let F be a finite field with prime characteristic p. Show that every element of F is
algebraic over the prime field..

Ex. 74. Show that every finite field has pn elements for some prime p.

Definition 75. Let E/F and K/F be two extensions of F . Then an F -homomorphism θ is
a field homomorphism θ : E → K such that θ(a) = a for all a ∈ F .

An F -automorphism of E/F is an F -isomorphism of E onto itself.

The extensions E/F and K/F are said to be K-isomorphic if there exists an isomorphism
θ : E → K which is also an F -homomorphism.

Ex. 76. Let E/F be an extension such that E = F (α1, . . . , αk). If an F -automorphism θ of
E leaves each of αj , 1 ≤ j ≤ k fixed, then show that θ is the identity. Hence deduce that any
two F -automorphism that agree on αj ’s must be the same.

3 Splitting Fields and Normal Extensions

Topics: Definition of a splitting field of a polynomial, uniqueness, normal extensions, ele-
ments conjugate over a field F .

Definition 77. Let f ∈ F [x] and E/F be an extension. We say that f splits over E if either
f is a constant polynomial or if there exist α1, . . . , αn ∈ E such that f = c(x−α1) · · · (x−αn)
where c ∈ F is the leading coefficient of f .

The field E is said to be a splitting field of f over F if (i) f splits in E and (ii) f does not
split in any proper subfield of E.

Lemma 78. Let E/F be an extension. Assume that f ∈ F [x] splits in E. Then there exists
a unique subfield K of E such that K is a splitting field of f over F .

Given σ : K → L be a homomorphism of fields, then we have a natural homomorphism
σ∗ : K[x]→ L[x] defined by

σ∗(a0 + a1x+ . . .+ anx
n) = σ(a0) + σ(a1)x+ · · ·+ σ(an)xn.

Theorem 79 (Kronecker). Let f ∈ F [x] be a nonconstant polynomial. Then there exists an
extension E/F and an α ∈ E such that f(α) = 0.
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Corollary 80. Let f ∈ F [x]. Then there exists a splitting field of f over F .

Corollary 81. Let E/F and K/F be extensions. Let f ∈ F [x]. Assume that there exist
α ∈ E and β ∈ K such that f(α) = 0 = f(β). Then F (α) and F (β) are F -isomorphic.

Theorem 82. Let F1 and F2 be fields and let σ : F1 → F2 be an isomorphism. Let f ∈ F1[x].
Assume that E1 and E2 are splitting fields of f and σ∗(f) over F1 and F2 respectively. Then
there exist an isomorphism τ : E1 → E2 which extends σ.

Corollary 83. Any tow splitting fields of f ∈ F [x] are F -isomorphic.

Corollary 84. Let E/F be a splitting field of some polynomial. Let α, β ∈ E. Then there
exists an F -isomorphism of E mapping α to β iff mα,F = mβ,F , that is, iff α and β have the
same minimal polynomial over F .

Ex. 85. Find the splitting fields (in C) of (i) (x4 − 4) ∈ Q[x] and (ii) x3 − 2 ∈ Q[x].

Definition 86. An extension E/F is said to be normal iff every irreducible polynomial in
F [x] that has a root in E splits over E, that is, any polynomial f ∈ F [x] that has a root in
E has all its roots in E.

Theorem 87. An extension E/F is a splitting field of some polynomial f ∈ F [x] if the
extension E/F is finite and normal.

Example 88. f(x) = xp − a, p a prime and a 6= 0 over Q[x].

Example 89. f(x) = x6 − 1 over Q. We factorize f as

f(x) = (x3 − 1)(x3 + 1) = (x− 1)(x2 + x+ 1)(x+ 1)(x2 − x+ 1).

If ξ is a primitive 3rd root of unity, then

f(x) = (x− 1)(x− ξ)(x− ξ2)(x+ 1)(x+ ξ)(x+ ξ2).

Thus, Q[ξ] is the splitting field of f over Q. We have |Q(ξ) : Q| = 2.

Example 90. f(x) = x6 + 1 over Q.

Keeping the notation of the last example. Then the roots are ±i, ±iξ, ±iξ2. Hence

Q(ξ, i) is the splitting field of f over Q. Since ξ = −1
2 +

√
3
2 i, we find that ξ /∈ Q(i). Hence

we conclude that |Q(i, ξ) : Q| = 4.

Example 91. f(x) = x2 + ax+ b ∈ F [x].

Ex. 92. Find the splitting fields of the following polynomials over Q. Also, find the degrees
of the splitting fields over Q. (i) x4 − 1, (ii) (x2 − 2)(x2 − 3), (iii) x3 − 3, (iv) x3 − 1, (v)
(x2 − 2)(x3 − 2).

Ex. 93. Find the splitting fields over Q of the following polynomials and find their degree
over Q.
(i) x6 − 1, (ii) x6 + 1 and (iii) x6 − 27.

Ex. 94. Show that the splitting field of x4 + 3 over Q is Q(i, α
√

2), where α = 4
√

3. What is
its degree over Q?
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Ex. 95. Let E : F be a finite extension which is the splitting field of a set of polynomials in
F [x]. Show that E is the splitting field of a single polynomial in f [x].

Ex. 96. Let |E : F | = 2. Show that E is the splitting field over F .

Ex. 97. Let E be a splitting field of f(x) ∈ F [x]. Show that any F -automorphism of E
permutes the roots of f .

Ex. 98. Let p ∈ N be a prime. Show the the splitting field of xp−1 over Q is of degree p−1.

4 Separable Extensions

Topics: Formal derivative, An irreducible polynomial over a field of characteristic 0 has only
simple roots, An irreducible polynomial f over a field of characteristic p has only multiple
roots iff its is of the form f(x) = g(xp). All roots of an irreducible polynomial have the same
multiplicity.

Separable polynomial, separable extension, perfect fields, fields of characteristic 0 and
finite fields are perfect.

Definition 99. Let f = a0 + a1x+ · · ·+ anx
n ∈ F [x]. Then the formal derivative Df ∈ F [x]

is defined by Df = a1 + 2a2x+ · · ·+ nanx
n−1. Note that D : F [x]→ F [x] is F -linear.

Definition 100. Let f ∈ F [x]. An element α ∈ E where E/F is an extension field, is said
to be repeated root if (x− α)2 is a divisor of f in E[x]. A root of f , which is not a repeated
root is called a simple root.

Proposition 101. Let (x) ∈ F [x] be nonzero. Let E be the splitting filed of f(x). Then the
following are equivalent:

(i) f has a repeated root in E.
(ii) There exists α ∈ E such that f(α) = 0 = (Df)(α).
(iii) There exists a non-constant polynomial g ∈ F [x] that divides both f and its derivative

Df in F [x].

Proof. Let (i) hold. Then there exists α ∈ E and k ≥ 2 such that f(x) = (x−α)kg(x) ∈ E[x].
Clearly, f(α) = 0 = (Df)(α). Hence (ii) is true.

Let (ii) hold. Let g := min(α, F ). Since f(α) = 0 = (Df)(α), it follows that f and Df lie
in the kernel of the evaluation homomorphism h(x) 7→ h(α). Since the kernel is the principal
ideal (g) ⊂ F [x], the polynomial g is a common divisor of both f ad Df . That is, (iii) is
proved.

Suppose that (iii) holds. Write f(x) = g(x)h(x) ∈ F [x]. Since f splits in E, we see that g
also splits in E. Let α ∈ E be a root of g. We then have f(α) = 0 and f(x) = (x−α)h(x) for
some h(x) ∈ E[x]. Now, Df(x) = h(x) + (x−α)(Dh)(x). Since g divides both f and Df and
since (x−α) divides g(x), it follows that (x−α) is a divisor of h(x) = Df(x)−(x−α)(Dh)(x),
say,h(x) = (x−α)h1(x). But then f(x) = (x−α)(x−α)h1(x). Thus, α is a repeated root of
f in E, the splitting field of f(x).
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Proposition 102. Let f(x) ∈ F [x] be irreducible. Then f is not separable iff (i) the charac-
teristic of F is a prime p and (ii) f(x) = g(xp), that is, f(x) = a0+a1x

p+a2x
2p+ · · ·+anxnp.

Proof. Assume that f is not separable. Hence there exists a non-constant g(x) ∈ F [x] such
that g divides f and Df . Since f is irreducible and g|f , we deduce that f and g are associates.
Since g and hence f divides Df , a polynomial of degree less than that of f , it follows that
Df(x) = 0. But this means that each of the coefficients of Df(x) is zero, say, kak = 0. If
ak 6= 0, this can happen iff the characteristic of F is p > 0 and k is a multiple of p.

Corollary 103. An irreducible polynomial over a field F of characteristic 0 has only simple
roots. Hence every f(x) ∈ F [x] is separable.

Definition 104. An irreducible polynomial f ∈ F [x] is said to be separable over F iff f does
not have multiple roots in a splitting field of f .

A polynomial is said to be separable iff each of its irreducible factors is separable over F .

Corollary 105. An irreducible polynomial is separable iff Df = 0.

Definition 106. An algebraic extension E/F is said to be separable iff the minimal polyno-
mial of each element of E is separable over F .

Corollary 107. Let F be a field of characteristic 0. Then every polynomial in F [x] is
separable over F and hence every algebraic extension E/F is separable.

Example 108. Let CharF = p > 0. Let a ∈ F be such that f(x) = xp − a has no root in
F . We claim that f is an inseparable polynomial. For, if α, β are roost of f(x) in a splitting
field, we have αp = a = βp. Hence (α − β)p = αp − βp = 0. Hence e have α = β. Thus
f has only one root, say, α, with multiplicity p. We now show that f is irreducible. If g is
an irreducible factor of f , then γ(ga) = 0. Hence g = min(α, F ) and so g divides f . Since
deg f = p and deg g ≥ 1, it follows that deg = p and hence f = g.

In particular, if E = F (y), where y is transcendental, then f(x) = xp − y ∈ E[x] is
irreducible. Any extension K/E in which f has a root will be inseparable.

5 Finite Fields

Lemma 109. Let F be a field of characteristic p > 0. Then (x + y)p = xp + yp and
(xy)p = xpyp for all x, y ∈ F . In particular, x 7→ xp is an injective field homomorphism of F
to itself.

Theorem 110. A field E has pn elements iff it is a splitting field of the polynomial xp
n − x

over its prime subfield Zp.

Corollary 111. There exists a finite field GF (pn) of order pn for each prime p and n ∈ N.
Two finite fields are isomorphic iff they have the same number of elements.

The field GF (pn) is called the Galois field of order pn. Recall the Euler’s function ϕ(n)
defined on N: ϕ(n) is the number of integers m such that 0 < m < n such that m and n are
coprime.
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Theorem 112. Let G be a finite subgroup of F ∗, the multiplicative group of a field F . Then
G is cyclic.

In particular, if F is a finite field, then F ∗ is cyclic.

Proof. Let a ∈ G be of maximal order, say, m. Then o(g)|o(a) for any g ∈ G. Hence gm = 1
for every g ∈ G. That is, every g ∈ G is a root of the polynomial xm − 1. This polynomial
has at most m roots in F . Hence |G| ≤ m. But {ak : 1 ≤ k ≤ m} are m distinct elements.
Hence we conclude that G = 〈a〉.

Theorem 113 (Primitive Element Theorem). Let E/F be a finite separable extension. Then
E = F (α) for some α ∈ E. Thus, any finite separable extension is simple.

Proof. Let us start with the case when F is infinite. Let E = K(α, β). Then α and β are
algebraic over F . Let f and g be the minimal polynomials of α and β. Let K := Split(fg, F )
be the splitting field of fg over F . Then f and g split in K. (Why?) Let α1 = α, α2, . . . , αm
be the roots of f . Let β1 = β, β2, . . . , βn be the roots of g. Note that the roots of f and g are
distinct, since the extension E : F is separable.

Since F is infinite we can find a non-zero c /∈
{
β−βj
α−αi

: 1 ≤ i ≤ m, 1 < j ≤ n
}

. Let θ =

β − cα. We claim that E = F (θ).

Consider h(x) = g(c(x− α) + β) = g(cx+ (β − cα)) ∈ F (θ)[x]. Note that f(x) ∈ F (θ)[x].
We also have f(α) = 0 and h(α) = g(β) = 0. Thus α is a common root of both f and g in
F (θ). Also, for any i 6= 1, αi is not a root of h. For, c(αi − α) + β 6= βj for i > 1 and any j,
by our choice of c. Hence α is the only root of h in F (θ). It follows that (x− α) is the GCD
of f(x) and h(x) in the ring F (θ)[x]. This means that αinF (θ). But then β = θ+ cα ∈ F (θ).
Hence E = F (θ).

The general case, namely when E = F (α1, . . . , αn) follows by induction.

If F is finite, then E is finite and we know E∗ = 〈a〉. Hence E = F (a).

Remark 114. The proof, in fact, gives us a method to find θ. In the case of characteristic
0, we can choose a non-zero integer m such that m is not of the form

β−βj
α−αi

. See the examples
below.

Example 115. Q(
√

2, i) = Q(
√

2 + i).

Example 116. Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Example 117. Q(
√

2,
√

3, i) = Q(
√

2 +
√

3 + i).

Example 118. Lest that you believe that Q(α, β) is always Q(α + β), we look at another
example. Q(

√
2 + i,

√
3− i) = Q((

√
3− i)− (

√
2 + i)).

Example 119. Let F := Z2(t) be the field of rational functions over Z2. Consider f(x) :=
x2 − t and g(x) = x2 − (t + t3). Let α and β be roots of f and g in a splitting field. We
have α = t2 and β2 = t + t3. It is easy to see that f is irreducible over F (β) and g is
irreducible over F (α). We therefore have |F (α, β) : F | = 4. Let θ ∈ F (α, β). We write it as
θ = p(t) + q(t)α+ r(t)β. On squaring, we get

θ2 = p(t)2 + q(t)2α2 + r(t)2β = p(t)2 + tq(t)2 + (t+ t2)r(t)2 ∈ F (t).
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In particular, |F (θ) : F | ≤ 2 for any θ ∈ F (α, gb). This shows that we cannot find a primitive
element for the extension F (α, β) : F .

6 Galois Theory

Topics: Galois group, Galois Extensions, Fundamental Theorem of Galois Theory.

Definition 120. Let E/F be an extension. The set of all automorphisms σ of F that leave
F pointwise fixed is a group under composition and it is called the Galois group of E/F . We
let Gal (E/F ) denote this group.

Lemma 121. Let E/F be a finite separable extension. Then |Gal (E/F )| ≤ [E : F ], that is,
the order of the Galois group of E/F is at most the degree of E/F .

Definition 122. Let E be a field and let G be a group of automorphisms of E. Then the set

EG := {a ∈ E : σ(a) = afor all σ ∈ G}

is a subfield of E and is called the fixed field of G.

Theorem 123. Let E be a field and G be a group of automorphisms of E. Let F := EG be
the fixed field of G. Then

(i) E/F is algebraic,
(ii) for each α ∈ E, the minimal polynomial mα(x) = (x−α1) · · · (x−αk) where {ga1, . . . , αk}

is the G-orbit of α, that is, the set {σ(α) : σ ∈ G}.

Definition 124. An extension E/F is said to be a Galois extension if it is separable and
normal.

Theorem 125. Let E be a field and G a group of automorphisms of E. Let F be the fixed
field of G. Then

(i) E/F is a Galois extension,
(ii) The Galois group of E/G is G,
(iii) We have [E : F ] = |Gal (E/)|.

Theorem 126. Let E/F be a finite extension and let Gal (E/F ) be the Galois group of E/F .
Then

(i) |Gal (E/F )| divides [E : F ],
(ii) |Gal (E/F )| = [E : F ] iff E/F is a Galois extension, in which case F is the fixed field

of Gal (E/F ).

Proposition 127. Let E,F,K be fields such that F ⊂ K ⊂ E. Assume that E/F is Galois.
Then E/K is Galois. If K/F is normal, then K/F is also Galois.

Let E/F be an extension and let K be an intermediate field between F and E, that is,
F ⊂ K ⊂ E. Let H stand for a subgroup of Gal (E/F ). Let K denote the set of intermediate
fields of E/F and H, the set of subgroups of G. Consider the maps

K 7→ Gal (E/K)

H 7→ EH .

The next theorem, the main result of Galois theory related these two maps.
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Theorem 128 (Galois Correspondence). Let E/F be a Galois extension and let Gal (E/F )
be its Galois group. The maps from K to H and vice-versa

K 7→ Gal (E/K)

H 7→ EH .

are inverses of each other.

Furthermore, the extension K/F is normal iff the corresponding subgroup Gal (E/K) is
normal. In such a case, we have Gal (K/F ) ' Gal (E/F )/Gal (E/K).

7 Appendices

7.1 Roth’s Paper

The following theorem is by Roth. (AMM Vol 78 Pages 392-393)

Theorem 129. Let p1, . . . , pn be n-distinct positive prime numbers. Let F := Q(
√
p1, . . . ,

√
pn).

Let q1, . . . , qr be distinct primes none of which appear in the list {p1, . . . , pn}. Then
√
q1 · · · qr /∈

F .

Proof. We prove this by induction on n. Let n = 0. Then F = Q. If q1, . . . , qr are distinct
primes, then the polynomial x2 − q1q2 · · · qr is irreducible in Q[x] by Eisenstein criterion.
Hence

√
q1 · · · qr /∈ F . One may also adapt the classic proof of the irrationality of

√
2 to show

that
√
q1 · · · qr /∈ F .

Now assume the result for n − 1, n > 1. Let F = Q(
√
p1, . . . ,

√
pn). If we let F0 :=

Q(
√
p1, . . . ,

√
pn−1), then F = F0(

√
pn). Since result is true for n − 1 and since pn 6= pj ,

1 ≤ j ≤ n−1, it follows that F is a degree 2 extension of F0. Let q1, . . . , qr be distinct primes
none of which lie in {p1, . . . , pn}.

Let, if possible,
√
q1 · · · qr ∈ F . Then we can write

√
q1 · · · qr = a+ b

√
pn, with a, b ∈ F0.

We have
q1 · · · qra2 + b2pn + 2ab

√
pn. (1)

We consider 3 cases.

(i) ab 6= 0. Then (1) shows that

√
pn =

q1 · · · rq − a2 − pnb2

2ab
∈ F0,

a contradiction.

(ii) b = 0. Then
√
q1 · · · qr = a ∈ F0, contradiction to the induction hypothesis.

(iii) a = 0. Then
√
q1 · · · qr = b

√
pn. Therefore,

√
q1 · · · qrpn = bpn ∈ F0. This contradicts

the induction hypothesis.

Hence we conclude that the result is true.
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Corollary 130. If a prime q /∈ {p1, . . . , pn}, a set of primes, then
√
q /∈ Q(

√
p1, . . . ,

√
pn).

Corollary 131. If p1, . . . , pn are distinct primes, then |Q(
√
p1, . . . ,

√
pn) : Q| = 2n.

Example 132. We list some of the typical uses of the result.

1. |Q(
√

2,
√

7,
√

15) : Q)| = 8.

2. |Q(
√

14,
√

15) : Q)| = 4. For,
√

3 · 5 /∈ Q(
√

14) ⊂ Q(
√

2,
√

7).

3. |Q(
√

14,
√

6) : Q| = 4. For, if
√

14 ∈ Q(
√

6) ⊂ Q(
√

2,
√

3), then
√

7 ∈ Q(
√

2,
√

3).

7.2 Cyclotomic Polynomials

The proof below is due to Landau and is taken from an article by Weintraub.

Proof. Let f(x) ∈ Z[x] be irreducible of degree d. Let ξ be an n-th root of unity such that
f(ξ) = 0. Let j ∈ N. By division algorithm, we have unique polynomials qj(x) and rj(x) such
that f(xj) = qj(x)f(x) + rj(x) where deg rj < d. Observe that the value of f(ξj) depends on
the congruence class of j modulo n. Therefore, we have a finite set {r1(x), . . . , rn−1(x)} of
polynomials such that for any j ∈ Z, we have f(ξj) = r(ξ) for some polynomial r in the this
finite set. Also, note1 that if s is any polynomial of degree less than d such that s(ξj) = s(ξ),
then s(x) = r(x). For, otherwise, ξ will be a root of the nonzero polynomial s(x) − r(x) of
degree less than d, a contradiction.

Let us specialize j. Let j = p be a prime. Then we have f(ξp) = f(ξp)− f(ξ)p = r(ξ) for
some r in the finite list above. It is a trivial verification to see that f(xp) ≡ f(x)p (mod p).
Therefore, we can write this as f(xp) − f(x)p = pg(x) for some polynomial g. Again, by
division algorithm, there is a unique polynomial h of degree less than d such that g(ξ) = h(ξ).
Thus, r(ξ) = p× g(ξ) with deg r(x) < d an deg ph(x) < d. In view of the Note 1, we conclude
that r(x) = p× h(x). In particular, each coefficient of r is divisible by p.

Let A be the largest absolute value of the coefficients of all the polynomials r(x) in he
finite set. If the prime p > A, the observation that p divides the coefficients of r forces us to
conclude that r(ξ) = 0. That is, f(ξp) = r(ξ) = 0 for any prime p > A. As a consequence of
this, if m is an integer not divisible by any prime p ≤ A, then f(ξm) = 0.

Let k ∈ Z be relatively prime to n. Consider m := k + n
∏
q where q runs through all

primes p ≤ A that do NOT divide k.

Let p ≤ A be any prime.
(i) If p divides k, then p does not divide m. For, k and n are relatively prime and p does not
divide

∏
q.

(ii) If p does not divide k, then p appears in
∏
q and hence p does not divide m.

We are thus lead to the conclusion that if m is as above, m ≡ k (modn) and so f(ξk) =
f(ξm) = 0. That is, if k is relatively prime to n, then ξk is also a root of Φn(x). This proves
that Φn(x) is irreducible.

1
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Also, have a look at We follow Lorenz in this section. See Theorem 3 on page 89 and and
Theorem 3’ on page 91 of Lorenz’ Algebra Volume 1.

Miles: Galois Theory Notes Pages 86-87 for the Irreducibility of the cyclotomic polynomial
Φn(x).

This is Landau’s proof. A clear detailed exposition is available in Weintraub’s article. See
Galois Theory folder in Math books.

Schur’s proof in the same article is easier and better.

7.3 Dirichlet’s Theorem on Primes in Arithmetic Progression

The theorem of the title says that for any two integers n,m with gcd(n,m) = 1, there exist
infinitely many primes in the arithmetic progression m+ nk, k ∈ Z.

We shall prove a special case of this result when m = 1.

7.4 Abelian Groups as Galois Groups over Q

Cyclotomic polynomials and Dirichlet’s theorem on primes in AP of the form 1 + nk. Refer
to Fenrick Pages 173–178.

Abelian groups as Galois groups. Refer to Fenrick.
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