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We denote by F a finite field and by F ∗, the multiplicative group of nonzero elements of
F .

Theorem 1. G := F ∗ is cyclic.

Proof. We give two proofs of this result.

Proof (1): Let N := |F ∗|. If x ∈ G, then x is of finite order, say k. That is, the cyclic
subgroup generated by x contains k elements. In particular, k is a divisor of N , by Lagrange.
If k is a divisor of N , let ψ(k) denote the number of elements x ∈ G whose order is k. Then
ψ(k) ≥ 0. We observe that

∑
k|N ψ(k) = N , as any element x ∈ G will contribute to at most

one ψ(k).

Let ϕ denotes the Euler’s phi-function. Recall that for any positive integer k, ϕ(k) stands
for those r such that 1 ≤ r ≤ k and r is relatively prime to k. We claim that ψ(k) ≤ ϕ(k) for
any divisor k of N .

If ψ(k) = 0, the claim is obviously true. If ψ(k) ≥ 1, we then claim ψ(k) = ϕ(k). Let
x ∈ G be of order k. Let r, 1 ≤ r ≤ k, be relatively prime to k. Then xr is of order k. Hence
ψ(k) ≥ ϕ(k). We claim that if y ∈ G is of order k, then y = xr for an r relatively prime to k.
For, otherwise, the equation Xk = 1 has at least k + 1 solutions, xj , 1 ≤ j ≤ k and y in the
field F . Hence the claim that ψ(k) ≤ ϕ(k) for any dividor k of N is proved.

It is well-known that
∑

k|N ϕ(k) = N . (See below for a proof of this fact.) We thus arrive
at

N =
∑
k|N

ψ(k) ≤
∑
k|N

ϕ(k) = N.

Thus equality holds everywhere. Since ψ(k) ≤ ϕ(k), we are led to conclude that ψ(k) = ϕ(k)
for all divisors k of N . In particular, when k = N , we get ψ(N) = ϕ(N). Since 1 is relatively
prime to N , we see that ϕ(N) ≥ 1, and hence ψ(N) ≥ 1. That is, there exists an element
a ∈ G which is of order N .

We now give a group-theoretic proof of
∑

k|N ϕ(k) = N . Let C ≡ CN denote the cyclic
group of order N . If k is a divisor of N , then one knows that there is exactly one cyclic
subgroup of order k and the number of generators of this cyclic group is ϕ(k). Now as seen
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earlier, any g ∈ C will have to lie in exactly one such cyclic subgroup, namely, the cyclic
subgroup generated by g itself. Thus we have N =

∑
k|N ϕ(k).

Proof (2): Let a ∈ G be of maximal order, that is, the order of a is greater than or equal
to the order of any x ∈ G. Since G is finite such an a exists. Let m be the order of a. Note
that m is a divisor of N and hence m ≤ N . If x ∈ G has order k > 1, we claim that k divides
m. (See Exercise below.) Thus xm = 1 holds true for all x ∈ G. Thus the equation Xm = 1
has N solutions in the field F . But on the other hand, it can have at most m solutions. We
therefore conclude that N ≤ m ≤ N . That is, m = N or a ∈ G is a generator of G.

Ex. 2. Let G be an abelian group. Let x and y have orders m and n respectively.
(i) If m and n are relatively prime, then the order of xy is mn.
(ii) There exists an element z ∈ G of order l. c.m.(m,n). Hint: Let d = gcd(m,n). Then
r := n/d and m are realtively prime.
(iii) Let m be the maximum of orders of elements of G. If a has order k, then k divides m.

Remark 3. Note that both the proofs yield the following stronger result. If G is a finite
subgroup of the multiplicative group F ∗ of a field F , then G is cyclic.

Remark 4. The first proof yields the following result in group theory. If G is a group of
order N and if for any divisor d of N , there exists at most one subgroup of order d in G, then
G is cyclic.
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