Finite Sets

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

For $n \in \mathbb{N}$, let $I_n := \{1, 2, \dots, n\}$ be the initial segment.

Definition 1. A set A is said to be finite if either $A = \emptyset$ or there exists a bijection $f: A \to \{1, 2, ..., n\}$ for some $n \in \mathbb{N}$.

Lemma 2. If m < n, there is no one-to-one map of I_n into I_m .

Proof. Let m = 1 and n > 1. No map $f: I_n \to I_1 = \{1\}$ can be 1-1. For, f(1) = f(n) = 1 and $n \neq 1$. Thus the result is true for m = 1.

Let P(m) be the statements: Given n > m, no map $f: I_n \to I_m$ can be 1-1.

Thus we have seen P(1) is true. Assume the result P(m). Consider m+1. Let n > m+1. Let $f: I_n \to I_{m+1}$ be 1-1. There are two possibilities for f(n).

Case 1: Let f(n) = m + 1. Then consider the map $g: I_{n-1} \to I_m$ given by g(j) = f(j). Then g is 1-1 and hence I_m is not true.

Case 2: Let f(n) = r < m+1. Then there is at most one $1 \le k < n$ such that f(k) = m+1. We define $g: I_{n-1} \to I_m$ by setting g(j) = f(j) for $j \ne k$ and g(k) = r = f(n). Then g is 1-1 and hence P(m) is not true.

Thus we conclude that such an f cannot exist. In other words, P(m+1) is also true. By the principle of induction, we conclude that P(m) is true for all m and hence the lemma is proved.

Lemma 3. If m < n, then there is no onto map $f: I_m \to I_n$.

Proof. Let $f: I_m \to I_n$ be onto where m < n. We define $g: I_n \to I_m$ as follows: Let $r \in I_n$. Let $i := \min f^{-1}(r)$. We set g(r) = i. Then g is 1-1: If g(r) = g(s), then there exists $k \in I_m$ such that f(k) = r, s, i.e., f is not a function!

Corollary 4. If $f: I_m \to I_n$ is a bijection, then m = n.

Definition 5. A finite set A is said to have n elements, if there is a bijection $f: A \to I_n$. Note that in view of the corollary this is well-defined. For any finite set A, we let |A| denote the number of elements in A. **Lemma 6.** Let $f: A \to I_n$ be 1-1. Then A is finite, and we have $|A| \leq n$.

Proof. Let $r_1 = \min\{f(a) : a \in A\} \subset \mathbb{N}$, $r_2 = \min\{f(A) \setminus \{r_1\}\}$. Note that $r_1 \ge 1$ and $r_2 > r_1$ so that $r_2 \ge 2$. We proceed by induction to construct $r_1 < r_2 < \cdots < r_k$ where $r_k \ge k$. This process will stop at some stage in the sense that $f(A) \setminus \{r_j : 1 \le j \le k\} = \emptyset$ for some $k \le n$. For, otherwise, if k > n, then $r_k \ge k > n$. This contradicts the fact that $r_k \in I_n$. We now construct a bijection $g: I_k \to A$ as follows: g(i) = a where $f(a) = r_i$. One easily checks that g is a bijection.

Corollary 7. If A is finite and $B \subset A$, then B is finite and $|B| \leq |A|$.

Proof. Let $f: A \to I_n$ be a bijection. Then the composition of the inclusion $B \hookrightarrow A$ followed by f is a 1-1 map of B into I_n . By Lemma 6, the result follows.

Lemma 8. Let $f: I_n \to A$ be onto. Then A is finite and $|A| \leq n$.

Proof. Define $g: A \to I_n$ by setting $g(a) = \min f^{-1}(a)$. Then g is 1-1 and the result follows from the last corollary.

Proposition 9 (Pigeonhole Principle). Let $m, n \in \mathbb{N}$ be such that m < n. If $f: I_n \to I_m$ is a map, then there exists $i, j \in I_n$ such that $i \neq j$ and f(i) = f(j).