1 Plancherel Theorem

Let \(f \in L^1(\mathbb{R}) \). We define the Fourier transform \(\mathcal{F}f(x) := \hat{f}(x) := \int_{\mathbb{R}} f(t)e^{-ixt} \, dt \) for \(x \in \mathbb{R} \).

The main results of these lectures are the \textit{Plancherel theorem} which states that the linear map \(\mathcal{F} : L^1(\mathbb{R}) \cap L^2(\mathbb{R}) \to L^2(\mathbb{R}) \) extends to an "isometry" of \(L^2(\mathbb{R}) \) onto itself and that for a continuous \(f \in L^1(\mathbb{R}) \) with \(\hat{f} \in L^1(\mathbb{R}) \) we have the \textit{Fourier inversion formula}:

\[
\hat{f}(x) = \int_{\mathbb{R}} \hat{f}(y)e^{iyx} \, dy \text{ for all } x \in \mathbb{R}.
\]

We now check whether \(\hat{f} \) lies in \(L^2(\mathbb{R}) \) and if so, compute its norm. Here we go:

\[
|\hat{f}(x)|^2 = \left| \frac{e^{-ibx} - e^{-iax}}{-ix} \right|^2 = \frac{e^{-ibx} - e^{-iax} (e^{-ibx} - e^{-iax})}{-ix} = \frac{e^{-ibx} - e^{-iax} e^{ibx} - e^{iax}}{-ix} = 2 - (e^{-i(b-a)x} + e^{i(b-a)x}) \]
\[
= \frac{2 - 2 \cos(b-a)x}{x^2} = \frac{2(1 - \cos(b-a)x)}{x^2} = 2 \cdot \frac{2 \sin^2((b-a)x/2)}{x^2},
\]
where in the last we have used a well-known trigonometric identity. We thus find:

\[\left\| \hat{f}(x) \right\|_2^2 = \int_{-\infty}^{\infty} |\hat{f}(x)|^2 \, dx = 4 \int_{-\infty}^{\infty} \frac{\sin^2((b-a)x/2)}{x^2} \, dx. \]

We put \(u := (b-a)x/2 \) so that the above becomes

\[
\left\| \hat{f}(x) \right\|_2^2 = 4 \int_{R} \frac{\sin^2 u (b-a)^2}{4u^2} \frac{2 \, du}{b-a} = 2 \int_{R} \frac{\sin^2 u (b-a)}{u^2} \, du = C(b-a).
\]

Here we have let \(C \) stand for the real number \(2 \int_{R} \frac{\sin^2 u}{u^2} \, du \).

Remark 1. Let us observe that \(C \) is a (finite) real number, i.e., \(\sin^2 u/u^2 \) is integrable on \(R \). For, the function \(g(x) := \begin{cases} \sin x/x & \text{if } x \neq 0 \\ 1 & \text{if } x = 0 \end{cases} \) is continuous on \(R \). Hence the continuous function \(\sin^2 x/x^2 \) is integrable over the finite interval \([-1, 1]\) and it is dominated by the continuous function \(1/x^2 \) on \(R \setminus [-1, 1] \) on which \(1/x^2 \) is integrable. Hence \(C \) is finite.

We now define \(F^* \) on \(S \) as follows:

\[F^* f(x) := \int_{R} f(t)e^{ixt} \, dt, \quad \text{for } f \in S. \]

Proceeding as above, we find that \(\| F^* f \|_2^2 = C \| f \|_2^2 \) for \(f := 1_{(a,b)} \), for the same \(C \).

If \(f := 1_{(a,b)} \) and \(g := 1_{(c,d)} \), then we have:

\[\langle F f, g \rangle = \int_{c}^{d} \left[\int_{a}^{b} e^{-ixt} \, dt \right] \, dx = \int_{c}^{d} \left[1_{\left(a, \frac{b}{2} \right]} e^{ixt} \, dx \right] \, dt = \langle f, F^* g \rangle. \]

Thus on the indicator functions, \(F^* \) behaves like the adjoint of \(F \). We now wish to extend these results to \(f, g \in S \). We observe that if \(f := 1_{(a,b)} \), and \(g := 1_{(b,c)} \), then

\[
(F f + F g)(x) = \hat{f}(x) + \hat{g}(x) = \int_{a}^{b} e^{-ixt} \, dt + \int_{b}^{c} e^{-ixt} \, dt = \int_{a}^{c} e^{-ixt} \, dt = F(f + g)(x).
\]

Hence it follows that

\[\| F f + F g \|_2^2 = \| F(f + g) \|_2^2 = \int_{R} \left| \int_{a}^{c} e^{-ixt} \, dt \right|^2 \, dx = C(c-a). \]

But, since,

\[\| F f + F g \|_2^2 = \langle F f + F g, F f + F g \rangle = \| F f \|_2^2 + \| F g \|_2^2 + 2 \cdot \text{Re} \left(\hat{f}, \hat{g} \right), \]
we find that $\text{Re} \left(\hat{f}, \hat{g} \right) = 0$, for f and g as above. Similar result holds true also for \mathcal{F}^*.

Even if $f := 1_{(a,b)}$ and $g := 1_{(c,d)}$ with $a \leq b < c \leq d$ we have $\text{Re} \left(\hat{f}, \hat{g} \right) = 0$. To see this, let $h := 1_{(b,c)}$. Then using the earlier result, we have $\text{Re} \left(\hat{f} + \hat{h}, \hat{g} \right) = 0$ and $\text{Re} \left(\hat{h}, \hat{g} \right) = 0$. Subtracting the latter from the first, we get $\text{Re} \left(\hat{f}, \hat{g} \right) = 0$. Similarly for \mathcal{F}^*.

We note that $\mathcal{F} 1_{(a,b)}$ satisfies: $\mathcal{F} 1_{(a,b)}(-x) = \overline{\mathcal{F} 1_{(a,b)}(x)}$, i.e., $\hat{f}(-x) = \overline{\hat{f}(x)}$:

$$\hat{f}(-x) = \int_a^b e^{ixt} dt = \overline{\int_a^b e^{-ixt} dt} = \overline{\hat{f}(x)}.$$

If $f, g \in L^2(\mathbb{R})$ satisfy (*), i.e., $f(-x) = \overline{f(x)}$ etc., then we have

$$\langle f, g \rangle = \int f(x) \overline{g(x)} dx = \int f(x) g(x) dx = \int f(-x) g(-x) dx = \int f(x) \overline{g(x)} dx = \langle f, g \rangle.$$

where we have used the fact that the Lebesgue measure is invariant under $x \mapsto -x$. This observation, when applied to \hat{f} and \hat{g} for $f := 1_{(a,b)}$ and $g := 1_{(c,d)}$, allows us to conclude $\langle \hat{f}, \hat{g} \rangle = 0$ and $\langle \mathcal{F} f, \mathcal{F} g \rangle = 0$. That is, we can drop the prefix “Re” in $\text{Re} \left(\hat{f}, \hat{g} \right)$.

Now if f is any step function, say, of the form $f = \sum_{i=1}^n a_i 1_{J_i}$ where J_i are finite intervals and $a_i \in \mathbb{C}$, we can write $f = \sum_{j=1}^N b_j 1_{I_j}$, where I_j are pair-wise disjoint finite intervals. (It is easier to convince yourself of this than writing down a formal verbose proof!) We then have

$$\| \mathcal{F} f \|_2^2 = \left\langle \sum_j b_j \mathcal{F} 1_{I_j}, \sum_k b_k \mathcal{F} 1_{I_k} \right\rangle = \sum_{j,k} b_j \overline{b_k} C \langle 1_{I_j}, 1_{I_k} \rangle = C \sum |b_j|^2 \| 1_{I_j} \|^2 = C \int |f(x)|^2 dx = C \| f \|_2^2.$$

Similarly, we have $\| \mathcal{F}^* f \|_2^2 = C \| f \|_2^2$, for $f \in \mathcal{S}$. Also, by the bilinearity of the inner product we have

$$\langle \mathcal{F} f, g \rangle = \langle f, \mathcal{F}^* g \rangle,$$

for $f, g \in \mathcal{S}$.

Thus we have linear maps $\mathcal{F}, \mathcal{F}^* : \mathcal{S} \to L^2(\mathbb{R})$ such that i) $\| \mathcal{F} f \|_2^2 = C \| f \|_2^2 = \| \mathcal{F}^* f \|_2^2$, and ii) $\langle \mathcal{F} f, g \rangle = \langle f, \mathcal{F}^* g \rangle$ for all $f, g \in \mathcal{S}$. Since \mathcal{S} is dense in $L^2(\mathbb{R})$ and $\mathcal{F}, \mathcal{F}^*$ are continuous linear, we have unique extensions, denoted again by \mathcal{F} and \mathcal{F}^*, from $L^2(\mathbb{R})$ to itself. This follows from the following elementary result:

Lemma 2. Let $T : D \subset E \to F$ be a continuous linear map defined on a dense subspace D of E to a Banach space F. Then T has a unique continuous linear extension $\overline{T} : E \to F$ such that $\| \overline{T} \|_{(E,F)} = \| T \|_{(D,F)}$ (operator norms).
Proof. We shall only sketch the proof.

For $x \in E$, take any $x_n \in D$ such that $\|x - x_n\| \to 0$. Then define $T(x) := \lim Tx_n$ which exists since Tx_n is Cauchy in F (due to the uniform continuity of a continuous linear map!). If $y_n \in D$ is such that $\|y_n - x\| \to 0$ then it can be easily seen that $\lim Ty_n = \lim Tx_n$ so that Tx is well defined.

Hence we have $\|Ff\|_2^2 = C \|f\|_2^2 = \|F^*f\|_2^2$ and $\langle Ff, g \rangle = \langle f, F^*g \rangle$ for all $f, g \in L^2(\mathbb{R})$, by continuity of the inner product.

We also have

\[\langle f, g \rangle = \frac{1}{4} \left[\|f + g\|^2 + i \|f + ig\|^2 - \|f - g\|^2 - i \|f - ig\|^2 \right] \]

\[= \frac{1}{4C} \left[\|Ff + Fg\|^2 + i \|Ff + iFg\|^2 - \|Ff - Fg\|^2 - i \|Ff - iFg\|^2 \right] \]

\[= \frac{1}{C} \langle Ff, Fg \rangle = \frac{1}{C} \langle F^*Ff, g \rangle. \]

The last equality is valid, as $\langle h, Fg \rangle = \langle F^*h, g \rangle$ where $h = Ff \in L^2(\mathbb{R})$.

We put $g := F^*Ff - f \in L^2(\mathbb{R})$ in $\langle f, g \rangle = (1/C) \langle F^*Ff, g \rangle$ to get

\[0 = \left\langle f - \frac{1}{C} F^*Ff, g \right\rangle = \left\| f - \frac{1}{C} F^*Ff \right\|^2 = 0. \]

That is, $F^*Ff = Cf$ a.e. Similarly, $F^*Ff = Cf$ a.e. Thus we have proved the following theorem:

Theorem 3 (Plancherel). Let S denote the dense subspace of the step functions in $L^2(\mathbb{R})$. Let F, F^* denote the Fourier and conjugate Fourier transforms defined as above. Then, for C as above,

F and F^* map S into $L^2(\mathbb{R})$; in fact, we have:

$\|Ff\|^2 = C \|f\|^2 = \|F^*f\|^2$ for $f \in S$.

F, F^* extend to an “isometry” of $L^2(\mathbb{R})$ onto itself; that is, $F^*F = C = F^*F$ on $L^2(\mathbb{R})$. □

2 Fourier Inversion Theorem

We may ask whether for $f \in L^1(\mathbb{R})$ we have the formula $\hat{f}(x) = \int_{\mathbb{R}} f(t)e^{-ixt} dt$ and motivated by the Plancherel theorem whether for nice enough functions we can invert the Fourier transform, i.e., $f(t) = \int \hat{f}(x)e^{ixt} dx$.

The first formula is not all obvious even if we assume that $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$, as we have extended F to $L^2(\mathbb{R})$ by an abstract procedure. However, this is easy to justify: We start with a non-negative $f \in L^1(\mathbb{R})$ and take any sequence f_n of step functions increasing to f.

We can now apply the monotone convergence theorem to conclude that Ff is given by the above formula.

The proof of the second is given as the conclusion of the following theorem:
Theorem 4 (Fourier Inversion Theorem). Let f be a continuous function in $L^1(\mathbb{R})$. Assume that $\hat{f} \in L^1(\mathbb{R})$. Then we have

$$f(x) = \frac{1}{2\pi} \int_{\mathbb{R}} \hat{f}(y)e^{ixy} dy, \quad \text{for all } x \in \mathbb{R}. $$

Proof. The double integral $\int \hat{f}(y)e^{ixy} dy = \int (\int_{\mathbb{R}} f(t)e^{-ity} dt)e^{ixy} dx$ may not be absolutely convergent (the trouble lies in the x-variable) and hence we cannot use Fubini to evaluate it as an iterated integral. So, what we do, is to adopt a classical trick of introducing a convergence factor in the x-variable. We take a “nice” function ψ such as a continuous function with compact support with $\hat{\psi} \in L^1(\mathbb{R})$, or $\psi(y) := e^{-y^2}$ or any function that “decays rapidly at ∞”) with $\psi(0) = 1$. If you wish you may take $\psi(y) = e^{-y^2}$ in the following.

We have by dominated convergence theorem

$$\lim_{\varepsilon \to 0} \int \psi(\varepsilon y)\hat{f}(y)e^{ixy} dy = \int \hat{f}(y)e^{ixy} dy. \quad (1)$$

We unwind Eq. 1 and use Fubini on the LHS (of Eq. 1):

$$\lim_{\varepsilon \to 0} \int \psi(\varepsilon y)\hat{f}(y)e^{ixy} dy = \lim_{\varepsilon \to 0} \int \psi(\varepsilon y)(\int_{\mathbb{R}} f(t)e^{-ity} dt)e^{ixy} dy$$

$$= \lim_{\varepsilon \to 0} \int f(t)(\int \psi(\varepsilon y)e^{-ity} dy) dt$$

$$= \lim_{\varepsilon \to 0} \int f(t)(\int \psi(u)e^{-iu(t-x)} du) dt \quad \text{where } u = \varepsilon y$$

$$= \lim_{\varepsilon \to 0} \int f(t)\hat{\psi}(\frac{t-x}{\varepsilon}) \frac{dt}{\varepsilon}$$

$$= \lim_{\varepsilon \to 0} \int f(x+\varepsilon v)\hat{\psi}(v) dv \quad \text{where } \varepsilon v = t - x$$

$$= f(x) \int \hat{\psi}(v) dv,$$

the last equality being in view of the continuity of f and dominated convergence theorem. This completes the proof of the theorem, except for an irritating but minor detail to be attended to. For some ψ we need to compute $\int \hat{\psi}(v) dv$, which in view of the conclusion of the theorem should be nothing other than a constant times $\hat{\psi}(0)$. By computing the Fourier transform of e^{-x^2}, we can have satisfaction. \hfill \Box

Remark 5. It is traditional to derive the Plancherel theorem from the Fourier inversion theorem as follows:

Let $f \in L^1(\mathbb{R}) \cap L^2(\mathbb{R})$. Take $g(t) := \overline{f(-t)}$. Then, $f \ast g$ is continuous and lies in $L^1(\mathbb{R})$. We have by the definition of convolution

$$f \ast g(0) = \int f(-t)g(t) dt = \int f(-t)\overline{f(-t)} dt = \|f\|_2^2.$$

On the other hand, by the inversion formula, we have

$$f \ast g(0) = C \int f \ast g(x) dx = C \int \hat{f}(x)\hat{g}(x) dx = C \int \hat{f}(x)\overline{\hat{f}(x)} dx = C \|\hat{f}\|_2^2.$$

The Plancherel theorem follows from Eq. 5 and Eq. 5.
Acknowledgement: Lectures given at a Refresher Course for College teachers held in the Department of Mathematics, University of Bombay in June 1991.