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1 Plancherel Theorem

Let f ∈ L1(R). We define the Fourier transform Ff(x) := f̂(x) :=
∫
R f(t)e−ixt dt for x ∈ R.

The main results of these lectures are the Plancherel theorem which states that the linear
map F : L1(R) ∩ L2(R) → L2(R) extends to an “isometry” of L2(R) onto itself and that for
a continuous f ∈ L1(R) with f̂ ∈ L1(R) we have the Fourier inversion formula:

f(x) =

∫
R
f̂(y)eiyx dy for all x ∈ R.

We recall first the definition of a step function. A function f : R → C is called a step
function if it is a finite linear combination of characteristic (or indicator) functions of finite
intervals. Recall also that S, the space of step functions is dense in Lp(R) for all 1 ≤ p <∞.
Thus it is natural to verify the assertion of the Plancherel theorem in the case of f := 1J , the
indicator function of a finite interval J = (a, b), [a, b), [a, b], (a, b]. Notice that whatever be the
form of J , the indicator functions 1J are all the same as elements of Lp. We now compute
the Fourier transform of f :

f̂(x) =

∫
R
f(t)e−ixtdt =

∫ b

a
e−ixtdt =

e−ibx − e−iax

−ix
.

Also, we have

‖f ‖22 =

∫ ∞
−∞
|f(t)|2dt =

∫ b

a
|1|2dt =

∫ b

a
1dt = b− a.

We now check whether f̂ lies in L2(R) and if so, compute its norm. Here we go:

|f̂(x)|2 = |e
−ibx − e−iax

−ix
|2 =

e−ibx − e−iax

−ix
(
e−ibx − e−iax
−ix

)

=
e−ibx − e−iax

−ix
eibx − eiax

ix
=

2− (e−i(b−a)x + ei(b−a)x)

x2

=
2− 2 cos(b− a)x

x2
= 2

1− cos(b− a)x

x2

= 2 · 2sin2((b− a)x/2)

x2
,
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where in the last we have used a well-known trigonometric identity. We thus find:∥∥∥ f̂(x)
∥∥∥2
2

=

∫ ∞
−∞
|f̂(x)|2dx = 4

∫ ∞
−∞

sin2((b− a)x/2)

x2
dx.

We put u := (b− a)x/2 so that the above becomes∥∥∥ f̂(x)
∥∥∥2
2

= 4

∫
R

sin2 u

4u2
(b− a)2

2 du

b− a

= 2

∫
R

sin2 u

u2
(b− a) du

= C(b− a).

Here we have let C stand for the real number 2
∫
R

sin2 u
u2 du.

Remark 1. Let us observe that C is a (finite) real number, i.e., sin2 u/u2 is integrable on

R. For, the function g(x) :=

{
sinx/x if x 6= 0

1 if x = 0
is continuous on R. Hence the continuous

function sin2 x/x2 is integrable over the finite interval [−1, 1] and it is dominated by the
continuous function 1/x2 on R \ [−1, 1] on which 1/x2 is integrable. Hence C is finite.

We now define F∗ on S as follows:

F∗f(x) :=

∫
R
f(t)eixt dt, for f ∈ S.

Proceeding as above, we find that ‖F∗f ‖22 = C ‖f ‖22 for f := 1(a,b), for the same C.

If f := 1(a,b) and g := 1(c,d), then we have:

〈Ff, g〉 =

∫ d

c
[

∫ b

a
e−ixtdt]1dx =

∫ b

a
1[

∫ d

c
eixtdx] dt = 〈f,F∗g〉 .

Thus on the indicator functions, F∗ behaves like the adjoint of F . We now wish to extend
these results to f, g ∈ S. We observe that if f := 1(a,b), and g := 1(b,c), then

(Ff + Fg)(x) = f̂(x) + ĝ(x) =

∫ b

a
e−ixtdt+

∫ c

b
e−ixtdt

=

∫ c

a
e−ixtdt = F(f + g)(x).

Hence it follows that

‖Ff + Fg‖22 = ‖F(f + g)‖22 =

∫
R
|
∫ c

a
e−ixt dt|2dx = C(c− a).

But, since,

‖Ff + Fg‖22 = 〈Ff + Fg,Ff + Fg〉 = ‖Ff ‖22 + ‖Fg‖22 + 2 · Re
〈
f̂ , ĝ
〉
,
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we find that Re
〈
f̂ , ĝ
〉

= 0, for f and g as above. Similar result holds true also for F∗.

Even if f := 1(a,b) and g := 1(c,d) with a ≤ b < c ≤ d we have Re
〈
f̂ , ĝ
〉

= 0. To see this,

let h := 1(b,c). Then using the earlier result, we have Re
〈
f̂ + ĥ, ĝ

〉
= 0 and Re

〈
ĥ, ĝ
〉

= 0.

Subtracting the latter from the first, we get Re
〈
f̂ , ĝ
〉

= 0. Similarly for F∗.

We note that F1(a,b) satisfies: F1(a,b)(−x) = F1(a,b)(x), i.e., f̂(−x) = f̂(x):

f̂(−x) =

∫ b

a
eixtdt =

∫ b

a
e−ixtdt = f̂(x).

If f, g ∈ L2(R) satisfy (∗), i.e., f(−x) = f(x) etc., then we have

〈f, g〉 =

∫
f(x)g(x)dx =

∫
f(x)g(x)dx =

∫
f(−x)g(−x)dx

=

∫
f(x)g(x)dx = 〈f, g〉 .

where we have used the fact that the Lebesgue measure is invariant under x 7→ −x. This
observation, when applied to f̂ and ĝ for f := 1(a,b) and g := 1(c,d), allows us to conclude〈
f̂ , ĝ
〉

= 0 and 〈Ff,Fg〉 = 0. That is, we can drop the prefix “Re” in Re
〈
f̂ , ĝ
〉

.

Now if f is any step function, say, of the form f =
∑n

i=1 ai1Ji where Ji are finite intervals

and ai ∈ C, we can write f =
∑N

j−1 bj1Ij , where Ij are pair-wise disjoint finite intervals. (It
is easier to convince yourself of this than writing down a formal verbose proof!) We then have

‖Ff ‖22 =

〈∑
j

bjF1Ij ,
∑
k

bkF1Ik

〉
=

∑
j,k

bjbkC
〈
1Ij ,1Ik

〉
= C

∑
|bj |2

∥∥1Ij ∥∥2 = C

∫
|f(x)|2 dx = C ‖f ‖22 .

Similarly, we have ‖F∗f ‖22 = C ‖f ‖22, for f ∈ S. Also, by the bilinearity of the inner product
we have

〈Ff, g〉 = 〈f,F∗g〉 , for f, g ∈ S.

Thus we have linear maps F ,F∗ : S → L2(R) such that i) ‖Ff ‖22 = C ‖f ‖22 = ‖F∗f ‖22,
and ii) 〈Ff, g〉 = 〈f,F∗g〉 for all f, g ∈ S. Since S is dense in L2(R) and F ,F∗ are continuous
linear, we have unique extensions, denoted again by F and F∗, from L2(R) to itself. This
follows from the following elementary result:

Lemma 2. Let T : D ⊂ E → F be a continuous linear map defined on a dense subspace D
of E to a Banach space F . Then T has a unique continuous linear extension T : E → F such
that

∥∥T ∥∥
(E,F )

= ‖T ‖(D,F ) (operator norms).
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Proof. We shall only sketch the proof.

For x ∈ E, take any xn ∈ D such that ‖x− xn‖ → 0. Then define T (x) := limTxn which
exists since Txn is Cauchy in F (due to the uniform continuity of a continuous linear map!).
If yn ∈ D is such that ‖yn − x‖ → 0 then it can be easily seen that limTyn = limTxn so
that Tx is well defined.

Hence we have ‖Ff ‖22 = C ‖f ‖22 = ‖F∗f ‖22 and 〈Ff, g〉 = 〈f,F∗g〉 for all f, g ∈ L2(R),
by continuity of the inner product.

We also have

〈f, g〉 =
1

4
[‖f + g‖2 + i ‖f + ig‖2 − ‖f − g‖2 − i ‖f − ig‖2]

=
1

4C
[‖Ff + Fg‖2 + i ‖Ff + iFg‖2 − ‖Ff −Fg‖2 − i ‖Ff − iFg‖2]

=
1

C
〈Ff,Fg〉 =

1

C
〈F∗Ff, g〉 .

The last equality is valid, as 〈h,Fg〉 = 〈F∗h, g〉 where h = Ff ∈ L2(R).

We put g := F∗Ff − f ∈ L2(R) in 〈f, g〉 = (1/C) 〈F∗Ff, g〉 to get

0 =

〈
f − 1

C
F∗Ff, g

〉
=

∥∥∥∥f − 1

C
F∗Ff

∥∥∥∥2 = 0.

That is, F∗Ff = Cf a.e. Similarly, FF∗f = Cf a.e. Thus we have proved the following
theorem:

Theorem 3 (Plancherel). Let S denote the dense subspace of the step functions in L2(R).
Let F ,F∗ denote the Fourier and conjugate Fourier transforms defined as above. Then, for
C as above,
F and F∗ map S into L2(R); in fact, we have:

‖Ff ‖2 = C ‖f ‖2 = ‖F∗f ‖2 for f ∈ S.

F ,F∗ extend to an “isometry” of L2(R) onto itself; that is, FF∗ = C = F∗F on L2(R).

2 Fourier Inversion Theorem

We may ask whether for f ∈ L1(R) we have the formula f̂(x) =
∫
R f(t)e−ixt dt and moti-

vated by the Plancherel theorem whether for nice enough functions we can invert the Fourier
transform, i.e., f(t) =

∫
f̂(x)eixt dx.

The first formula is not all obvious even if we assume that f ∈ L1(R)∩L2(R), as we have
extended F to L2(R) by an abstract procedure. However, this is easy to justify: We start
with a non-negative f ∈ L1(R) and take any sequence fn of step functions increasing to f .
We can now apply the monotone convergence theorem to conclude that Ff is given by the
above formula.

The proof of the second is given as the conclusion of the following theorem:
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Theorem 4 (Fourier Inversion Theorem). Let f be a continuous function in L1(R). Assume
that f̂ ∈ L1(R). Then we have

f(x) =
1

2π

∫
R
f̂(y)eiyt dy, for all x ∈ R.

Proof. The double integral
∫
f̂(y)eixydx =

∫
(
∫
R f(t)e−iyt dt)eixy dx may not be absolutely

convergent (the trouble lies in the x-variable) and hence we cannot use Fubini to evaluate
it as an iterated integral. So, what we do, is to adopt a classical trick of introducing a
convergence factor in the x-variable. We take a “nice” function ψ such as a continuous
function with compact support with ψ̂ ∈ L1(R), or ψ(y) := e−y

2
or any function that “decays

rapidly at ∞”) with ψ(0) = 1. If you wish you may take ψ(y) = e−y
2

in the following.

We have by dominated convergence theorem

lim
ε→0

∫
ψ(εy)f̂(y)eixy dy =

∫
f̂(y)eixy dy. (1)

We unwind Eq. 1 and use Fubini on the LHS (of Eq. 1):

lim
ε→0

∫
ψ(εy)f̂(y)eixy dy = lim

ε→0

∫
ψ(εy)(

∫
R
f(t)e−iyt dt)eixy dy

= lim
ε→0

∫
f(t)(

∫
ψ(εy)e−iy(t−x) dy) dt

= lim
ε→0

∫
f(t)(

∫
ψ(u)e−

iu
ε
(t−x) du) dt where u = εy

= lim
ε→0

∫
f(t)ψ̂(

t− x
ε

)
dt

ε

= lim
ε→0

∫
f(x+ εv)ψ̂(v) dv where εv = t− x

= f(x)

∫
ψ̂(v)dv,

the last equality being in view of the continuity of f and dominated convergence theorem.
This completes the proof of the theorem, except for an irritating but minor detail to be
attended to. For some ψ we need to compute

∫
ψ̂(v) dv, which in view of the conclusion of

the theorem should be nothing other than a constant times ψ(0). By computing the Fourier
transform of e−x

2
, we can have satisfaction.

Remark 5. It is traditional to derive the Plancherel theorem from the Fourier inversion
theorem as follows:

Let f ∈ L1(R) ∩ L2(R). Take g(t) := f(−t). Then, f ∗ g is continuous and lies in L1(R).
We have by the definition of convolution

f ∗ g(0) =

∫
f(−t)g(t) dt =

∫
f(−t)f(−t) dt = ‖f ‖22 .

On the other hand, by the inversion formula, we have

f ∗ g(0) = C

∫
ˆf ∗ g(x) dx = C

∫
f̂(x)ĝ(x) dx = C

∫
f̂(x)f̂(x) dx = C

∥∥∥ f̂ ∥∥∥2
2
.

The Plancherel theorem follows from Eq. 5 and Eq. 5.
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