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Recall the fundamental theorem of algebra, FTA for short.

Theorem 1. Let P (X) = Xn + an−1X
n−1 + · · · + a1X + a0 be a polynomial with complex

coefficients. Then it has a zero in C, that is, there exists a λ ∈ C such that P (λ) = 0.

One encounters the fundamental theorem of algebra in a Linear Algebra course while
trying to prove the following result.

Theorem 2. Let V be a finite dimensional vector space over C. Let A : V → V be linear.
Then A has an eigen-value, that is, there exists a nonzero vector v ∈ V and a complex number
λ ∈ C such that Av = λv.

The way one proves this theorem is to rewrite the equation Av = λv as (A − λI)v = 0
and interpret it as the kernel of (A − λI) is nontrivial. It follows that (A − λI) is singular
or what is the same det(A − λI) = 0. Thus, λ is an eigen value of A iff it is a root of the
characteristic polynomial of A. As C is algebraically closed, we deduce that we can always
find such a λ. Thus the theorem is a consequence of the fundamental theorem of algebra.

What is equally well-known is that if we can prove Theorem 2 somehow independent of
the FTA, then FTA can be deduced from it. This is easily seen as follows. Given a monic
polynomial (that is the coefficient of the leading term is 1), Xn +an−1X

n−1 + · · ·+a1X+a0,
one considers the so-called companion matrix of the polynomial:

A :=



0 0 0 . . . 0 −a0
1 0 0 . . . 0 −a1
0 1 0 . . . 0 −a2
...

...
...

. . .
...

...
0 0 0 . . . 0 −an−2

0 0 0 . . . 1 −an−1


.

Then det(XI −A) is the given polynomial, as can seen by induction on n. (This may also be
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seen as follows. Consider the matrix (XI −A):
X 0 . . . 0 a0
−1 X . . . 0 a1
...

. . .
...

...
...

...
. . .

...
...

...
0 . . . . . . −1 X + an−1

 .

Multiply the last row by X and add it to the (n − 1)-th row, and in the resulting matrix,
multiply the (n−1)-th row by X and add it to the (n−2)-th row and so on. At the (n−1)-th
step, we end up with a matrix of the form(

01×(n−1) p(X)

−I(n−1)×(n−1) ∗

)
.

By the properties of determinants, it follows that det(XI−A) is the determinant of the above
matrix which is clearly p(X). )

Now if we assume that Theorem 2 is true, applying it to A we deduce FTA.

In fact, Derksen proves a seemingly stronger result and deduces Theorem 2 and hence
FTA.

Theorem 3. If A1, . . . , Ar are commuting endomorphisms of a finite dimensional vector space
over C, then they have a common eigen-vector, that is, there exists a nonzero vector v ∈ V
and λj ∈ C for 1 ≤ j ≤ r such that Ajv = λjv for 1 ≤ j ≤ r.

To achieve this, he uses a slightly more involved induction. In stead, we use his argument
to prove Theorem 2 in a more direct way. Theorem 3 can be deduced from Theorem 2.

Like any proof of FTA, this also needs some results from analysis/topology.

Lemma 4. Any polynomial of odd degree with real coefficients has a real zero.

Proof. It is enough to prove that a monic polynomial

P (X) = Xn + an−1X
n−1 + · · ·+ a1X + a0, (aj ∈ R, 0 ≤ j ≤ n− 1),

of odd degree has a real zero. If we set α := 1 + |a0|+ · · ·+ |an−1|, then it is easy to see that
P (α) > 0 and P (−α) < 0. Intermediate value theorem assures us of the existence of some
λ ∈ (−α, α) such that P (λ) = 0.

A more qualitative argument would run as follows. Write

P (X) = Xn(1 +
an−1

X
+ · · ·+ a0

Xn
).

Then as X → ±∞, the terms of the form
aj

Xn−j → 0 for 0 ≤ j ≤ n− 1. Since they are finite
in number, for |X| sufficiently large, we have an estimate for the sum 1 + an−1

X + · · ·+ a0
Xn :

1/2 ≤ 1 +
an−1

X
+ · · ·+ a0

Xn
≤ 3/2.

Consequently, P (X) ≤ Xn/2 < 0 if X is sufficiently large negative number and P (X) ≥
Xn/2 > 0 if X is sufficiently large positive number. Now complete the proof as before.
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Lemma 5. Let n be odd. Let V be an n-dimensional vector space over R. Assume that
A,B : V → V be two commuting endomorphims. Then they have a common eigen vector.

Proof. We prove the result by induction on the odd dimension of V . If dimV = 1, then the
result is obvious, as any nonzero vector is an eigen vector for both the operators.

Let n be odd. Assume that the result is true for all vector spaces of odd dimension less
than n. As a consequence of Lemma 4, A will have an eigen value, say, λ. Let

K = Ker (A− λI) and R = Im (A− λI).

Both these spaces remain invariant under any endomorphism B of V that commutes with A.
(Note that (A− λI) commutes with A and that any such B commutes with A− λI.) For, if
x ∈ R, then x = (A− λI)v for some v ∈ V . Now,

Bx = B(Av − λv) = A(Bv)− λBv = (A− λI)Bv ∈ R.

Similarly, if x ∈ K, then

(A− λI)Bx = B(A− λI)x = B0 = 0.

Note that dimK ≥ 1. Now, either K = V or K is a proper subspace of V . In the first case,
since K is odd dimensional, B will have an eigen vector in K. This vector is an eigen vector
of A also with eigen value λ.

Let dimK < n. By rank-nullity theorem, dimK+dimR = n and so exactly one of dimK
and dimR must be odd. Whichever has dimension odd, its dimension will be strictly less than
n. Hence by induction, both A and B will have a common eigen vector on that subspace.

Lemma 6. Let F be any field. Fix a positive integer d > 1. Assume that any endomorphism
on any vector space over the field F whose dimension is not divisible by d has an eigen vector.
Then any pair of commuting linear maps on V whose dimension is not divisible by d has a
common eigen vector.

Proof. The proof is exactly similar to that of the last lemma and hence omitted.

We are now ready to prove Theorem 2.

Proof. The proof will be by induction on the highest power of 2 dividing the dimension of
the vector space. Thus, we would have proved the result for vector spaces of dimension 101
even before we prove the result for n = 2!

As the starting point, we consider the case when V is odd dimensional complex vector
space. This corresponds to k = 0, that is, 20 is the highest power of 2 dividing the dimension
n. Let us consider the real vector space Hn of all hermitian matrices of order n. Its dimension

is 2×
(
n(n−1)

2

)
+ n = n2. Hence it is odd dimensional. We consider two linear maps

T1(B) :=
AB +BA∗

2
and T2(B) :=

AB −BA∗

2i
.
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One easily verifies that T1 and T2 are linear maps on Hn and that they commute. Hence by
Lemma 5, they have a common eigen vector. Let B be a (non-zero) common eigen vector,
say, T1B = λB and T2B = µB. It follows that

AB = T1(B) + iT2B = (λ+ iµ)B.

Since B is nonzero, when considered as a linear transformation on V (with respect to a
choice of an ordered basis), there exists a vector v ∈ V such that Bv 6= 0. But then,
ABv = (λ + iµ)Bv says that Bv is an eigen vector of A. (Alternatively, if we take as v any
non-zero column vector of B, then it is an eigen vector of A with eigen value λ+ iµ.)

We now proceed to the inductive step. Let k ≥ 1. The inductive hypothesis is that for
any n, where the highest power of 2 dividing n is less than 2k, any linear map on any n
dimensional complex vector space has an eigen vector. As a consequence of Lemma 5, it
follows that any pair of commuting linear maps on a vector space of such a dimension will
have a common eigen vector.

Let V be an n-dimensional vector space and T : V → V be linear. Assume that 2k is the
maximum power of 2 that divides n. We need to show that T has an eigen vector. Fix an
ordered basis of V . Let A be the matrix of T with respect to this basis.

We modify the proof in the starting inductive step. We now consider the set Sn of complex

symmetric matrices of order n. It is a complex vector space of dimension n(n+1)
2 . We consider

two maps
L1(B) = AB +BAt and L2(B) = ABAt,

where Ct denotes the transpose of the matrix C. It is easy to verify that they are linear maps
on Sn and that they commute. Thanks to our hypothesis on n, 2k−1 is the maximum power
of 2 that divides the dimension of Sn. Hence by what we said above, there exists a common
eigen vector B ∈ Sn of L1 and L2, say,

L1B = AB +BAt = λB and L2B = ABAt = µB.

Using the value of BAt from the first equation, we get

µB = L2B = A(λB −AB).

Hence (A2B − λAB + µB) = 0 or what is the same

(A2 − λA+ µI)B = 0.

Consider the quadratic equation X2 − λX + µ = 0 in C. By the standard formula for the
roots of quadratic equation and since square roots of any complex number exists in C, we can
factorize (X2 − λX + µ) = (X − α)(X − β). If we plug in A in place of X, we see that

(A− αI)(A− βI)B = 0.

If (A−βI)B = 0, then any nonzero column of B will be an eigen vector of A. If (A−βI)B 6= 0,
then any of its nonzero column is an eigen vector of A.

Remark 7. Theorem 3 can be now proved in a way similar to the proof in Lemma 5.
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Derksen’s article is available from:
http://www.math.lsa.umich.edu/ hderksen/preprint.html
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