Fundamental Theorem of Algebra via Linear Algebra

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Recall the fundamental theorem of algebra, FTA for short.

Theorem 1. Let $P(X) = X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$ be a polynomial with complex coefficients. Then it has a zero in \mathbb{C} , that is, there exists a $\lambda \in C$ such that $P(\lambda) = 0$. \Box

One encounters the fundamental theorem of algebra in a Linear Algebra course while trying to prove the following result.

Theorem 2. Let V be a finite dimensional vector space over \mathbb{C} . Let $A: V \to V$ be linear. Then A has an eigen-value, that is, there exists a nonzero vector $v \in V$ and a complex number $\lambda \in \mathbb{C}$ such that $Av = \lambda v$.

The way one proves this theorem is to rewrite the equation $Av = \lambda v$ as $(A - \lambda I)v = 0$ and interpret it as the kernel of $(A - \lambda I)$ is nontrivial. It follows that $(A - \lambda I)$ is singular or what is the same det $(A - \lambda I) = 0$. Thus, λ is an eigen value of A iff it is a root of the characteristic polynomial of A. As \mathbb{C} is algebraically closed, we deduce that we can always find such a λ . Thus the theorem is a consequence of the fundamental theorem of algebra.

What is equally well-known is that if we can prove Theorem 2 somehow independent of the FTA, then FTA can be deduced from it. This is easily seen as follows. Given a monic polynomial (that is the coefficient of the leading term is 1), $X^n + a_{n-1}X^{n-1} + \cdots + a_1X + a_0$, one considers the so-called companion matrix of the polynomial:

$$A := \begin{pmatrix} 0 & 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & 0 & \dots & 0 & -a_1 \\ 0 & 1 & 0 & \dots & 0 & -a_2 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \dots & 0 & -a_{n-2} \\ 0 & 0 & 0 & \dots & 1 & -a_{n-1} \end{pmatrix}.$$

Then det(XI - A) is the given polynomial, as can seen by induction on n. (This may also be

seen as follows. Consider the matrix (XI - A):

$$\begin{pmatrix} X & 0 & \dots & 0 & a_0 \\ -1 & X & \dots & 0 & a_1 \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & -1 & X + a_{n-1} \end{pmatrix}$$

Multiply the last row by X and add it to the (n-1)-th row, and in the resulting matrix, multiply the (n-1)-th row by X and add it to the (n-2)-th row and so on. At the (n-1)-th step, we end up with a matrix of the form

$$\begin{pmatrix} 0_{1\times(n-1)} & p(X) \\ -I_{(n-1)\times(n-1)} & * \end{pmatrix}.$$

By the properties of determinants, it follows that det(XI - A) is the determinant of the above matrix which is clearly p(X).

Now if we assume that Theorem 2 is true, applying it to A we deduce FTA.

In fact, Derksen proves a seemingly stronger result and deduces Theorem 2 and hence FTA.

Theorem 3. If A_1, \ldots, A_r are commuting endomorphisms of a finite dimensional vector space over \mathbb{C} , then they have a common eigen-vector, that is, there exists a nonzero vector $v \in V$ and $\lambda_j \in \mathbb{C}$ for $1 \leq j \leq r$ such that $A_j v = \lambda_j v$ for $1 \leq j \leq r$.

To achieve this, he uses a slightly more involved induction. In stead, we use his argument to prove Theorem 2 in a more direct way. Theorem 3 can be deduced from Theorem 2.

Like any proof of FTA, this also needs some results from analysis/topology.

Lemma 4. Any polynomial of odd degree with real coefficients has a real zero.

Proof. It is enough to prove that a monic polynomial

$$P(X) = X^{n} + a_{n-1}X^{n-1} + \dots + a_{1}X + a_{0}, (a_{j} \in \mathbb{R}, 0 \le j \le n-1),$$

of odd degree has a real zero. If we set $\alpha := 1 + |a_0| + \cdots + |a_{n-1}|$, then it is easy to see that $P(\alpha) > 0$ and $P(-\alpha) < 0$. Intermediate value theorem assures us of the existence of some $\lambda \in (-\alpha, \alpha)$ such that $P(\lambda) = 0$.

A more qualitative argument would run as follows. Write

$$P(X) = X^{n} (1 + \frac{a_{n-1}}{X} + \dots + \frac{a_{0}}{X^{n}}).$$

Then as $X \to \pm \infty$, the terms of the form $\frac{a_j}{X^{n-j}} \to 0$ for $0 \le j \le n-1$. Since they are finite in number, for |X| sufficiently large, we have an estimate for the sum $1 + \frac{a_{n-1}}{X} + \cdots + \frac{a_0}{X^n}$:

$$1/2 \le 1 + \frac{a_{n-1}}{X} + \dots + \frac{a_0}{X^n} \le 3/2.$$

Consequently, $P(X) \leq X^n/2 < 0$ if X is sufficiently large negative number and $P(X) \geq X^n/2 > 0$ if X is sufficiently large positive number. Now complete the proof as before. \Box

Lemma 5. Let n be odd. Let V be an n-dimensional vector space over \mathbb{R} . Assume that $A, B: V \to V$ be two commuting endomorphims. Then they have a common eigen vector.

Proof. We prove the result by induction on the odd dimension of V. If $\dim V = 1$, then the result is obvious, as any nonzero vector is an eigen vector for both the operators.

Let n be odd. Assume that the result is true for all vector spaces of odd dimension less than n. As a consequence of Lemma 4, A will have an eigen value, say, λ . Let

$$K = \text{Ker} (A - \lambda I) \text{ and } R = \text{Im} (A - \lambda I).$$

Both these spaces remain invariant under any endomorphism B of V that commutes with A. (Note that $(A - \lambda I)$ commutes with A and that any such B commutes with $A - \lambda I$.) For, if $x \in R$, then $x = (A - \lambda I)v$ for some $v \in V$. Now,

$$Bx = B(Av - \lambda v) = A(Bv) - \lambda Bv = (A - \lambda I)Bv \in R.$$

Similarly, if $x \in K$, then

$$(A - \lambda I)Bx = B(A - \lambda I)x = B0 = 0.$$

Note that dim $K \ge 1$. Now, either K = V or K is a proper subspace of V. In the first case, since K is odd dimensional, B will have an eigen vector in K. This vector is an eigen vector of A also with eigen value λ .

Let dim K < n. By rank-nullity theorem, dim $K + \dim R = n$ and so exactly one of dim K and dim R must be odd. Whichever has dimension odd, its dimension will be strictly less than n. Hence by induction, both A and B will have a common eigen vector on that subspace. \Box

Lemma 6. Let \mathbb{F} be any field. Fix a positive integer d > 1. Assume that any endomorphism on any vector space over the field \mathbb{F} whose dimension is not divisible by d has an eigen vector. Then any pair of commuting linear maps on V whose dimension is not divisible by d has a common eigen vector.

Proof. The proof is exactly similar to that of the last lemma and hence omitted. \Box

We are now ready to prove Theorem 2.

Proof. The proof will be by induction on the highest power of 2 dividing the dimension of the vector space. Thus, we would have proved the result for vector spaces of dimension 101 even before we prove the result for n = 2!

As the starting point, we consider the case when V is odd dimensional complex vector space. This corresponds to k = 0, that is, 2^0 is the highest power of 2 dividing the dimension n. Let us consider the *real* vector space \mathbf{H}_n of all hermitian matrices of order n. Its dimension is $2 \times \left(\frac{n(n-1)}{2}\right) + n = n^2$. Hence it is odd dimensional. We consider two linear maps

$$T_1(B) := \frac{AB + BA^*}{2}$$
 and $T_2(B) := \frac{AB - BA^*}{2i}$.

One easily verifies that T_1 and T_2 are linear maps on \mathbf{H}_n and that they commute. Hence by Lemma 5, they have a common eigen vector. Let B be a (non-zero) common eigen vector, say, $T_1B = \lambda B$ and $T_2B = \mu B$. It follows that

$$AB = T_1(B) + iT_2B = (\lambda + i\mu)B.$$

Since B is nonzero, when considered as a linear transformation on V (with respect to a choice of an ordered basis), there exists a vector $v \in V$ such that $Bv \neq 0$. But then, $ABv = (\lambda + i\mu)Bv$ says that Bv is an eigen vector of A. (Alternatively, if we take as v any non-zero column vector of B, then it is an eigen vector of A with eigen value $\lambda + i\mu$.)

We now proceed to the inductive step. Let $k \ge 1$. The inductive hypothesis is that for any n, where the highest power of 2 dividing n is less than 2^k , any linear map on any ndimensional complex vector space has an eigen vector. As a consequence of Lemma 5, it follows that any pair of commuting linear maps on a vector space of such a dimension will have a common eigen vector.

Let V be an n-dimensional vector space and $T: V \to V$ be linear. Assume that 2^k is the maximum power of 2 that divides n. We need to show that T has an eigen vector. Fix an ordered basis of V. Let A be the matrix of T with respect to this basis.

We modify the proof in the starting inductive step. We now consider the set \mathbf{S}_n of complex symmetric matrices of order n. It is a complex vector space of dimension $\frac{n(n+1)}{2}$. We consider two maps

$$L_1(B) = AB + BA^t$$
 and $L_2(B) = ABA^t$,

where C^t denotes the transpose of the matrix C. It is easy to verify that they are linear maps on \mathbf{S}_n and that they commute. Thanks to our hypothesis on n, 2^{k-1} is the maximum power of 2 that divides the dimension of \mathbf{S}_n . Hence by what we said above, there exists a common eigen vector $B \in \mathbf{S}_n$ of L_1 and L_2 , say,

$$L_1B = AB + BA^t = \lambda B$$
 and $L_2B = ABA^t = \mu B$.

Using the value of BA^t from the first equation, we get

$$\mu B = L_2 B = A(\lambda B - AB).$$

Hence $(A^2B - \lambda AB + \mu B) = 0$ or what is the same

$$(A^2 - \lambda A + \mu I)B = 0.$$

Consider the quadratic equation $X^2 - \lambda X + \mu = 0$ in \mathbb{C} . By the standard formula for the roots of quadratic equation and since square roots of any complex number exists in \mathbb{C} , we can factorize $(X^2 - \lambda X + \mu) = (X - \alpha)(X - \beta)$. If we plug in A in place of X, we see that

$$(A - \alpha I)(A - \beta I)B = 0.$$

If $(A-\beta I)B = 0$, then any nonzero column of B will be an eigen vector of A. If $(A-\beta I)B \neq 0$, then any of its nonzero column is an eigen vector of A.

Remark 7. Theorem 3 can be now proved in a way similar to the proof in Lemma 5.

Reference: H.Derksen, "The fundamental Theorem of Algebra and Linear Algebra", Amer. Math. Monthly, **110**, (2003), 620-623.

Derksen's article is available from: http://www.math.lsa.umich.edu/ hderksen/preprint.html