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Abstract

The aim of this article is to give a variety of simple and elementary proofs of the
fundamental theorem of algebra.

1 A Fundamental Lemma

Throughout our discussion, we let P (z) :=
∑n

k=0 akz
k be a (nonconstant) polynomial with

coefficients ak ∈ C, n ≥ 1 and an 6= 0. The following lemma is fundamental for all the proofs.
It says that the nonconstant polynomial functions are proper maps.

Lemma 1. There exists N > 0 such that |P (z)| > 1
2 |an| |z|

n for |z| > N . In particular,
|P (z)| → ∞ as |z| → ∞.

Proof. We have

∣∣∣∣P (z)

zn

∣∣∣∣ =
∣∣∣an +

an−1

z
+ · · ·+ a0

zn

∣∣∣ ≥ |an| −
∣∣∣∣∣∣
n−1∑
j=0

aj
zn−j

∣∣∣∣∣∣ (1)

If |z| ≥ 1, then |z|r ≥ |z| for r ≥ 1 so that 1
|zn−j | ≤

1
|z| or − 1

|zn−j | ≥ −
1
|z| since n − j ≥ 1. In

view of this, (1) yields ∣∣∣∣P (z)

zn

∣∣∣∣ ≥ |an| − n−1∑
j=0

|aj |
|z|

, for |z| ≥ 1. (2)

If we set M :=
∑n−1

j=0 |aj |, we get from (2),∣∣∣∣P (z)

zn

∣∣∣∣ ≥ |an| − M

|z|
, for |z| ≥ 1. (3)

If we choose z so that |an| − M
|z| > |an| /2, i.e. if N > 2M

|an| and |z| > N , we get the result from

(3).
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2 An Elementary Proof

This proof uses the fact that a real valued continuous function on a compact space attains its
minimum and some basic facts on the complex e exponential function. While the proof may
be considered as elementary, the reader is encouraged to go through the technical remarks at
the end of this section. We outline the proof to highlight the ideas involved.

Since |P (z)| → ∞ as |z| → ∞, we can find R > 0 such that |P (z)| < |P (0)| for all
|z| ≥ R. The continuous real valued function |P (z)| attains a minimum, say at z0, on the
compact set |z| ≤ R. By translation we may assume that z0 = 0. By multiplying by a
constant, we may assume that a0 = P (0) is real and nonnegative. Let m ≥ 1 be chosen so
that P (z) = a0 −

∑n
k=0 akz

k with am 6= 0. Choose ω ∈ C so that b = amω
m is real and

positive. Then for all r sufficiently small and positive, we have

ReP (rω) = a0 − brm +O(rm+1) and ImP (rω) = O(rm+1).

So, unless a0 = 0, we have

|P (rω)| = a0 − brm+1 +O(rm+1),

and z0 = 0 is not a point of minimum for |P |. Hence, a0 = P (0) = 0. We now work out the
details of this outline.

Lemma 2. |p| has a minimum in C. That is, there exists z0 ∈ C such that |P (z0)| ≤ |P (z)|
for z ∈ C.

Proof. Since B[0, k] is compact for any k ∈ N, the continuous function |p| attains its minimum
mk at some point, say, zk ∈ B[0, k]. From Lemma 1 it follows that there exists N ∈ N such
that |P (z)| > m1 if |z| > N . We claim that m := mN is the minimum of |p| in C. For, if
|z| ≤ N , then |P (z)| ≥ mN whereas, if |z| > N , then |P (z)| ≥ m1 = |P (z1)| ≥ mN , since
z1 ∈ B[0, N ].

Theorem 3. Every nonconstant polynomial with complex coefficients has a root in C.

Proof. We shall give two versions of a proof. I prefer the first proof as it does not try to hide
the basic idea behind a sleek choice of notation.

First Version

We write p(z) = p(z−z0 +z0) =
∑n

k=0 ak[(z−z0) + z0]k. Using binomial theorem, we can
rewrite this as p(z) =

∑n
k=0 bk(z−z0)k for some bk ∈ C. By hypothesis, |b0| = |p(z0)| ≤ |p(z)|

for z ∈ C. If |b0| 6= 0, we choose z = z0 + reit in a neighbourhood of z0 so carefully that
|p(z)| < |b0|.

Let k ≥ 1 be the first integer such that bk 6= 0. We have

|p(z)| =

∣∣∣∣∣∣
n∑
j=0

bjr
jeijt

∣∣∣∣∣∣ ≤
∣∣∣b0 + bkr

keikt
∣∣∣+

∣∣∣∣∣∣
∑
j≥k+1

bjr
jeijt

∣∣∣∣∣∣ . (4)
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We now choose t ∈ R so that rkbke
it is a negative multiple of b0. We fix such a t. We then

have
∣∣b0 + rkbke

it
∣∣ = |b0| − rk |bk|. From (4) we deduce that

|p(z)| ≤ |b0| − rk |bk|+

∣∣∣∣∣∣
∑
j≥k+1

bjr
jeijt

∣∣∣∣∣∣ . (5)

The function r 7→
∑

j≥k+1 bjr
jeijt is continuous and is 0 at r = 0. Hence for ε = 1

2r
k |bk|,

there is a δ > 0 such that ∣∣∣∣∣∣
∑
j≥k+1

bjr
jeijt

∣∣∣∣∣∣ < 1

2
rk |bk| , 0 < r < δ. (6)

From (5) and (6), we see that

|p(z)| ≤ |b0| −
1

2
rk |bk| < |b0| for z = z0 + reit, 0 < r < δ.

This contradiction proves the result.

Second Version

Let P be a polynomial of positive degree with coefficients in C. By Lemma 2 there
exists z0 ∈ C such that |P (z0)| ≤ |P (z)| for all z ∈ C. By considering the polynomial
p(z) = P (z + z0), we may assume that z0 = 0. We shall show that P (0) = 0.

There exists an integer m ≥ 1 and a, b ∈ C with b 6= 0 such that

P (z) = a+ bzm + zm+1Q(z), (7)

where Q is a polynomial. Suppose P (0) = a 6= 0. Choose an mth root w of −a/b. Since w is
fixed, the set {tw : 0 ≤ t ≤ 1} is compact and since Q is continuous, there exists a constant
M such that

∣∣wm+1Q(tw)
∣∣ ≤ M for all 0 ≤ t ≤ 1. Hence we can choose t ∈ (0, 1) such that

Mt < |a|. Consequently for such a t we have

t
∣∣wm+1Q(tw)

∣∣ < |a| . (8)

Now, we have, using (7),

P (tw) = a+ b(tw)m + (tw)m+1Q(tw)

= (1− tm)a+ (tw)m+1Q(tw), (9)

so that

|P (tw)| ≤ (1− tm) |a|+ ttm
∣∣wm+1Q(tw)

∣∣
< (1− tm) |a|+ tm |a| by (8)

= |a| = P (0).

This contradiction proves that P (0) = 0.
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Remark 4. A diligent reader would have observed that the above proof uses the following
facts from Analysis:

(R1) Weierstrass Theorem: A real valued continuous function on a closed and bounded
(i.e. compact) set attains maximum and minimum.

(R2) The simple equation zn = α has a solution in C for α ∈ C. The standard proof of this

fact uses the polar form of a complex number: If α = |α| eiθ, we take z = |α|1/n eiθ/n. This
in turn depends on some properties of the transcendental functions such as the exponential
function and trigonometric functions as well as the existence of nonnegative nth roots of
nonnegative real numbers. Note that it requires quite a bit of analysis to construct the
transcendental functions and establish their properties. However, see Remark 5 below which
indicates a proof which avoids these results.

In fact in any proof of the fundamental theorem of algebra, some results from analysis or
topology are needed. For instance, the standard so-called algebraic proofs use both of the
following results from real analysis:

(R3) Every nonnegative real number has a nonnegative square root.

(R4) Every nonconstant polynomial of odd degree with real coefficients has a real root.

Hence the fundamental theorem of algebra is essentially a theorem in analysis which is
needed in almost all branches of mathematics, including algebra and hence may be called a
fundamental theorem of mathematics.

Remark 5. Following a note of Littlewood, we can avoid the use of the existence the m-th
root of a complex number as follows. Let us observe that we may assume that m is odd, as
the square roots always exist in C. First of all notice that if n = 2, the result is well-known.
For if z = (x+ iy) is a possible solution of z2 = a+ ib, we then have x2− y2 = a and 2xy = b.
We eliminate y from these equations to get x2 − (b2/4x2)− a = 0 or

(x2 − a/2)2 = (b2 + a2)/4.

We may take x2 − a/2 to be the unique nonnegative square root of (b2 + a2)/4. Finally, we
take x to be the nonnegative square root of the nonnegative real number (

√
(a2 + b2)− a)/2.

(Observe that we use (R3).) In view of this, we need only solve the equation zn = λ when n
is odd. So we assume that n is odd in what follows.

Consider f(z) = zm − (a + ib). By Lemma 2, there exists z0 such that |f | attains its
minimum at z0. Write f(z0 +h) = A0 +A1h+ · · ·+hm. If A0 = f(z0) = 0, we are through. If
A0 6= 0, and z0 6= 0 then A1 = mzm−1

0 h 6= 0. We take h = −t(A0/A1) and argue as in the last
part of the proof above to show that there exists 0 < t < 1 such that |f(z0 + h)| < |f(z0)|.

If z0 = 0, and a 6= 0, then for t ≥ 0, Im f(±t) = −b = Im f(0) and R := Re f(±t) =
(−1)mtm − a. Since m is odd, one of the two signs must make |R| < |a| for sufficiently small
t. Hence |f(z)| < |a+ ib| where z is one of ±t. If a = 0 and b 6= 0, we argue similarly with
f(±it).

(Geometric Proof: If you draw picture of f(z0) 6= 0 and 0 and locate the points f(±iδ)
and f(±δ), you can see one of these four points must be nearer to 0 than f(z0).)
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3 Elementary Proofs using Leibniz Rule or Fubini

In this section we give two proofs, the first using Leibniz rule of differentiaton under the
integral sign and the other using Fubini’s theorem. The first one is due to Peter Loya. Let us
recall the Leibniz’s rule of differentiation under the integral sign: If f(x, t) and ∂f

∂x (x, t) are

continuous functions on [a, b]× [c, d], then F (x) :=
∫ d
c f(x, t) dt is differentiable on [a, b] and

we have

F ′(x) =

∫ d

c

∂f

∂x
(x, t) dt.

Let P (z) := zn+an−1z
n−1 + · · ·+a0 be a polynomial with aj ∈ C, 0 ≤ j ≤ n−1. Assume

that P does not vanish at any point C. For r, t ∈ R, we define

f(r, t) :=
1

P (reit)
=

1

rneint + · · ·+ a1reit + a0
.

By our assumption on P , f(r, t) is an infinitely differentiable function of r and t. We define

F (r) :=

∫ 2π

0
f(r, t) dt.

We plan to show that F is a constant. This will lead to a contradiction, since F (r) = F (0) =
a−1

0 · 2π is a nonzero constant. (Note that a0 = P (0) cannot be zero!) On the other hand,
F (r)→ 0 as r →∞ thanks to the fact that |P (z)| → ∞ as |z| → ∞.

Now, we show that F ′(r) = 0. By Leibniz rule, we have

F ′(r) := ∂rF (r) =

∫ 2π

0
∂rf(r, t) dt. (10)

We find
∂f

∂r
(r, t) = − nrn−1eint + · · ·+ a1e

it

(rneint + · · ·+ a1reit + a0)2
. (11)

On the other hand, if we differentiate f(r, t) with respect to t, we find that

∂f

∂t
(r, t) = − i · nrneint + · · ·+ ir · a1e

it

(rneint + · · ·+ a1reit + a0)2
= ir

∂f

∂r
(r, t). (12)

From (10)–(12), we conclude that

F ′(r) =
1

ir

∫ 2π

0

∂f

∂t
(r, t) dt =

1

ir
f(r, t)

∣∣2π
0

=
1

ir

[
1

P (rei2π)− P (rei0)

]
= 0. (13)

This completes the proof.

We now give a proof which uses Fubini theorem.

Fubini theorem.
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Let P be a complex polynomial which does not vanish on C and set f := 1/P . By
continuity of f at 0, we have

lim
r↘0

f(reit) = f(0) = 0(uniformly in t on R). (14)

By the chain rule, we get

Dρf(ρeiθ) = eiθf ′(ρeiθ) and Dθf(ρeiθ) = ρieiθf ′(ρeiθ),

where f ′(z) denotes the complex derivative of f . As a consequence, we have the Cauchy
Riemann equation in polar form:

Dρf(ρeiθ) =
1

ρi
Dθf(ρeiθ). (15)

For 0 < r < R <∞, we have the iterated integrals∫ π

−π

∫ R

r
Dθf(ρeiθ)dρ dθ =

∫ π

−π
[f(Reiθ)− f(reiθ) dθ (16)∫ R

r

∫ π

−π

1

ρi
Dθf(ρeiθ) dθdρ =

∫ R

r

1

ρi
[f(ρeiπ)− f(ρe−iπ) dρ = 0. (17)

Since the function in (15) is continuous on the rcetangle [−R,R] × [−π, π], Fubini can be
applied. Hence it follows from (16)–(17) that∫ π

−π
[f(Reiθ)− f(reiθ) dθ = 0, for 0 < r < R <∞. (18)

If f were not a constant, f(Reiθ) → 0 uniformly in θ as R → ∞. By taking r = 1/R and
letting R↗∞, we deduce from (14) and (18)∫ π

−π
[0− f(0)] dθ = 0.

Consequently, f(0) = 0, a contradiction.

Remark 6. The reader is recommended to compare the last two proofs keeping in mind
that the version of Leibniz rule used above is deduced from Fubini. More specifically, note
that (12) is the Cauchy-Riemann equations in polar form. Conclude that both the proofs are
essentially the same!

4 Proofs that use Cauchy’s Theorem from Complex Analysis

While there are quite a few proofs of FTA using complex analysis, the two proofs below use
nothing more than the Cauchy’s theorem.

Let us assume that P is a polynomial of degree is at least 2 and with real coefficients. Let
Γ be the path LR ∪CR where LR is the line segment from −R to R and CR is the semi-circle
from R to −R in the upper half plane.
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If P (z) is never zero on C, then f(z) := 1/P (z) is entire on C. Hence by Cauchy’s
theorem,

∫
ΓR
f(z) = 0. When R→∞,

∫
CR

f(z)→ 0, by the using the fact that |P (z)| → ∞
as |z| → ∞. It therefore follows that

∫ R
−R f(z) = 0 for all R > 0. In other words,

∫
R f(z) = 0.

Since P (z) ∈ R if z ∈ R, and if we deduce from the vanishing of the integral
∫
R f(z) = 0 that

f must change sign in R and has a real root, a contradiction.

To treat the general case, we apply the foregoing argument to the polynomial Q(z) :=
P (z)·P (z) where P (z) :=

∑n
k=0 akz

k if P (z) :=
∑n

k=0 akz
k. Clearly, Q(z) had real coefficients.

Note that Q(z) := (
∑n

r=0 arz
r)(
∑n

s=0 asz
s) so that

Q(z) =

2n∑
k=0

k∑
r=0

(arak−r + arak−r)zk =

2n∑
k=0

bkz
k,

where bk :=
∑k

r=0(arak−r + arak−r) ∈ R.

We conclude that Q and hence P has a zero in C.

Yet another proof using Cauchy’s theorem runs as follows. Write P (z) = zQ(z) + a0,
n ≥ 1 and an 6= 0. Then

1

z
=

P (z)

zP (z)
=
zQ(z) + a0

zP (z)
=
Q(z)

P (z)
+

a0

zP (z)
.

If P (z) 6= 0 for all z ∈ C, then 1/P is entire in C. Let γR(t) := Reit for 0 ≤ t ≤ 2π and
R > 0. By Cauchy’s theorem

∫
γR

Q
P = 0 so that

2πi =

∫
γR

1

z
=

∫
γR

a0

zP (z)
.

By Lemma 1, we have |P (z)| ≥ 1
2 |an||z|

n for large R. Hence it follows that

2π = |
∫
γR

a0

zP (z)
dz| ≤ 2πR

2|a0|
R|an|Rn

=
4π|a0|
|an|Rn

→ 0,

as R → ∞. Thus, we get the contradiction: 2π = 0. We therefore conclude that our
assumption that P (z) 6= 0 for all z ∈ C is wrong.

A third proof of FTA, due to R.P. Boas is given below. The proof is very interesting for
it dose not use the growth behaviour of a polynomial at infinity!

Assume that the polynomial P takes real values on R. Since P (z) never vanishes,
P (2 cos t) 6= 0 for any t ∈ R. Consider the integral

I :=

∫ 2π

0

dt

P (2 cos t)
.

Since P has no zeros and P (x) ∈ R for x ∈ R, it follows that P (2 cos t) has the same sign for
t ∈ [0, 2π]. Hence, we conclude that I 6= 0.
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We now interpret the integral I as an integral along the unit circle γ(t) := eit for 0 ≤ t ≤
2π:

I = −i
∫
γ

dz

zP (z + z−1)
.

If P (z) = a0 + a1z + · · ·+ anz
n with an 6= 0, then

P (z + 1/z) = a0 + a1

(
z +

1

z

)
+ · · ·+ an

(
z +

1

z

)n
= z−nQ(z),

where Q(z) is some polynomial. Note that Q(0) = an 6= 0 and Q(z) has no zeros in C. Hence
the integrand in I is zn−1/Q(z) which is holomorphic in C. By Cauchy’s theorem, I = 0.
This contradicts our earlier conclusion.

A fourth proof which uses the fact that an entire function can be represented by a power
series is given below.

Let P (z) = a0 + a1z + · · · + anz
n be a complex polynomial of degree n ≥ 1. If it has no

zeros in C, then f(z) = 1/P (z) is an entire function and hence can be represented by a power
series on whole of C: f(z) =

∑∞
k=0 bkz

k. The following observation is the key to the proof.

Lemma 7. There exist positive real numbers c and r such that |bk| > crk for infinitely many
k.

Assume the lemma. If we take z = 1/r in the power series for f , then for infinitely many
k, we have

|bkzk| = |bk|r−k > c > 0.

Thus the k-th terms of the convergent series for f(1/r) does not approach 0, a contradiction.

Proof of the lemma. We start with the fact that 1 = P (z)f(z) and equate the coefficients:

1 = P (z)f(z) = (a0 + a1z + · · ·+ anz
n)(b0 + b1 + · · ·+ ckz

k + · · · ).

We have a0b0 = 1 and hence a0 6= 0 and b0 6= 0. Also, by equating the coefficients of zn+k,
we find that

a0bk+n + a1bk+n−1 + · · ·+ anbk = 0 for all k ≥ 0. (19)

Since b0 6= 0, we choose c such that 0 < c < |b0|. Since an 6= 0, we choose an r > 0 such
that

|a0|rn + |a1|rn−1 + · · ·+ |an−1|r ≤ |an|.

By our choice, |b0| > c = cr0. Now suppose that |bk| > crk. We claim that for some j
between 1 and n, we shall have |bk+j | > crk+j . This claim proves the lemma. We shall prove
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the claim by contradiction. Thus, |bk+j | ≤ crk+j for all 1 ≤ j ≤ n. From (19), we obtain

|bk| =
|a0bk+n + a1bk+n−1 + · · ·+ an−1bk+1|

|an|

≤ |a0||bk+n|+ |a1||bk+n−1|+ · · ·+ |an−1||bk+1|
|an|

≤ |a0|crk+n + |a1|crk+n−1 + · · ·+ |an−1|crk+1

|an|

≤ crk
(
|a0|rn + |a1|rn−1 + · · ·+ |an−1|r

|an|

)
≤ crk.

This contradicts our assumption that |bk| > crk. Hence the lemma is proved.

A fifth proof due to R.P. Boas uses Picard’s theorem. If a nonconstant polynomial P does
not take the value 0, we claim that it does not take at least one of the values 1/k for k ∈ N.
For, if it does, then there exist zk ∈ C such that P (zk) = 1/k for all k ∈ N. We claim that
{zk : k ∈ N} is a bounded set. For, since |P (z)| → ∞ as |z| → ∞, there exists R > 0 such
that |P (z)| > 1 for all z with |z| > R. Hence we conclude that |zk| ≤ R for all k ∈ N. By
Bolzano-Weierstrass theorem, there exist a convergent subsequence, say, (zkn) converging to,
say, z0. By continuity, it follows that

P (z0) = lim
n
f(zkn) = lim

n
1/kn = 0,

a contradiction. Hence our claim is established. Thus our entire function does not take the
value 0 and 1/k for some k. Invoking Picard’s theorem, we conclude that P is a constant, a
contradiction.

5 Consequences of FTA

The following are some of the standard consequences (mainly algebraic in nature) of the
fundamental theorem of algebra.

Theorem 8. Any nonconstant polynomial P of degree n in C has n zeros in C. In fact,
there exist complex numbers αi, 1 ≤ i ≤ n and λ ∈ C such that P (αi) = 0 for 1 ≤ i ≤ n and
P (z) = λ(z − α1) · · · (z − αn).

Proof. For any α ∈ C, we can write:

P (z) = P ((z − α) + α) =

n∑
k=0

ak[(z − α) + α]k =

n∑
k=0

k∑
j=0

ak

(
k

j

)
(z − α)jαk−j , (20)

using binomial theorem. Each term on the right side of this equation for j > 0 has factor of
(z − α). Hence we can write

P (z) = (z − α)qα(z) +

n∑
k=0

akα
k, (21)
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for some polynomial qα of degree n− 1. (qα depends on α.)

By Lemma 2 and Theorem. 3, there is an α1 ∈ C such that P (α1) = 0. Replacing α by
α1 in (21), we get P (z) = (z−α1)qα1(z). Since qα1 is a polynomial of degree n− 1, the result
follows by induction.

Ex. 9. Show that the complex zeros of a real polynomial occur in conjugate pairs, that is, if
α ∈ C is a zero of p(z) :=

∑n
k=0 akz

k with ak ∈ R for all 1 ≤ k ≤ n, then α is also a zero of p.

Ex. 10. Show that a real polynomial can always be expressed as a product of real polynomials
of degree less than or equal to 2. Express z8 − 1 in this way.

Ex. 11. Prove that for z ∈ C, z 6= 1 we have 1 + z + · · · + zn = 1−zn+1

1−z , for any n ∈ Z+.
Hence deduce that

αn − βn

α− β
= αn−1 + αn−2β + · · ·+ αβn−2 + βn−1, for α 6= β.

Hint: Take z = α/β in the first part.

Ex. 12. Let α ∈ C be given. A polynomial p is divisible by (z−α) if there exists a polynomial
q such that p(z) = (z − α)q(z). For n ∈ N and c ∈ C, show that (z − α) divides c(zn − αn).
Hint: Exer. 11.

Ex. 13. If p is a polynomial and z0 ∈ C is arbitrary, show that p(z) − p(z0) is divisible by
z − z0. Hint: Express p(z)− p(z0) as a sum of terms of the type zk − zk0 .

Ex. 14. Show that p(z0) = 0 iff p(z) is divisible by (z − z0).

Ex. 15. Let p be a polynomial of degree at most n. Assume that there exists n distinct
points zk, 1 ≤ k ≤ n such that p(zk) = 0 for all k. Prove that p(z) = c(z − z1) · · · (z − zn) for
some c ∈ C. Hint: By Exer. 14, p(z) = (z − zn)q(z) and q(zk) = 0 for 1 ≤ k ≤ n − 1. Use
induction.

Ex. 16. If a polynomial of degree at most n vanishes at n+ 1 distinct points, then it is the
zero polynomial. Hint: Put z = zn+1 in the Exer. 15.

Ex. 17. If p and q are polynomials of degree at most n and if they agree at n + 1 distinct
points then p = q.
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