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Theorem 1 (Fubini). Let f ∈ L(Rk+l). Then we have∫
Rk+l

f(x, y) d(x, y) =

∫
Rk

(∫
Rl

f(x, y) dy

)
dx. (1)

That is, if we set F (x) :=
∫
Rl f(x, y) dy, then

i) F (x) exists for almost all x ∈ Rk,
ii)
∫
Rk F (x) dx exists and

iii)
∫
Rk F (x) dx =

∫
Rk+l f(x, y) d(x, y). In fact, we have∫

Rk+l

f(x, y) d(x, y) =

∫
Rk

(∫
Rl

f(x, y) dy

)
dx =

∫
Rl

(∫
Rk

f(x, y) dx

)
dy. (2)

Note that “a.e.” is to be understood in the respective spaces.

Proof. We prove the result in stages. We verify it for characteristic functions of bounded
intervals, for step functions, for functions in L+ and then for elements of L.

Step 1: The theorem is true for characteristic functions of (bounded) intervals. Let
K := I × J be an interval in Rk+l. Let f = χK . Then, in an obvious notation,∫

Rk+l

f(x, y)d(x, y) = `(K) =

k∏
i=1

(bi − ai) ·
l∏

j=1

(βj − αj).

Now F (x) =
∫
Rl f(x, y) dy =

∫
Rl χI(x)χJ(y) dy = `(J)χI(x) for all x ∈ Rk. We have∫

Rk F (x) dx = `(J)`(I) and the result follows in this case.

Step 2: The result is true for any step function on Rk+l. This follows from Step 1 and
the fact that the integral on LHS and both the integrals on the RHS of Eq. 1 are linear. We
note that in this case also F (x) is defined for all x ∈ Rk and that it is a step function on Rk.

Step 3: is to prove the following special case of Fubini theorem:

Proposition 2. Let E be a null set (i.e., a set of measure zero) in Rk+l. Fix x ∈ Rk. Let
Ex := {y ∈ Rl : (x, y) ∈ E}. Then Ex is of measure zero for almost all x ∈ Rk.
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Proof. First of all note that we cannot claim that Ex is of measure zero for all x ∈ Rk. For
example, take E := {(x, y) ∈ R2 : x ∈ Q, y ∈ R}.

To prove this special case of the theorem, let {gn} be an increasing sequence of step
functions on Rk+l such that {

∫
gn} converges but {gn(x, y)} diverges at all points of E. Let

Gn(x) :=
∫
gn(x, y) dy. Then Gn(x) is defined for all x ∈ Rk, it is a step function and it

satisfies
∫
Gn(x) dx =

∫
gn(x, y) d(x, y) by Step 2. Hence by one of fundamental lemmas

limnGn(x) exists for almost all x, say, for all x ∈ G. Note that Rk \G is a null set. Let x0 be
one such point, i.e., limn

∫
gn(x0, y) dy exists. Then again by the fundamental lemma, we see

that limn gn(x0, y) exists for almost all y ∈ Rl. But, by our choice, limn gn(x0, y) diverges for
all y ∈ Ex0 . The last two statements imply that Ex0 is of measure zero. As x0 is an arbitrary
point of G, Ex is of measure zero for all points in G.

Step 4: Let f ∈ L+(Rk+l). Let fn ∈ S(Rk+l) be such that fn increases with limn fn(x, y) =
f(x, y) for almost all (x, y) ∈ Rk+l and

∫
f := limn

∫
fn(x, y)d(x, y). Then Fn, defined as

above, is a step function defined for all x ∈ Rk. From Step 2, we have
∫
fn(x, y) d(x, y) =∫

Fn(x) dx. Since fn ≤ fn+1, we have Fn ≤ Fn+1 by positivity of the integral on the step
functions on Rl. Now the fact that {

∫
fn(x, y) d(x, y)} is convergent implies that {

∫
Fn}

is convergent. Hence the fundamental lemma implies that limn Fn(x) exists for almost all
x ∈ Rk.

Let E := {(x, y) ∈ Rk+l : limn fn(x, y) 6= f(x, y)}. By our choice of fn, E is of measure
zero. By the Proposition in Step 3, Ex is of measure zero for almost all x ∈ Rk. Thus
for almost all x ∈ Rk both the following statements are true: i) limn Fn(x) exists and ii)
Ex is of measure zero. Let x0 ∈ Rk be such that both the statements are true. Hence
limn fn(x0, y) = f(x0, y) for almost all y ∈ Rl and limn Fn(x0) = lim

∫
fn(x0, y) dy exists. It

follows that
∫
f(x0, , y) dy exists and equals limFn(x0).

We set F (x0) :=
∫
f(x0, y) dy = limn Fn(x0) and F (x) = 0 otherwise. The increasing

sequence {Fn} converges to F almost everywhere on Rk and

lim

∫
Fn(x) dx = lim

n

∫
fn(x, y) d(x, y) =

∫
f(x, y) d(x, y).

Thus F ∈ L+(Rk) with
∫
Rk F (x) dx =

∫
Rk+l f(x, y) d(x, y).

Step 5: The result extends by linearity to f ∈ L(Rk+l).

Step 6: Interchanging the roles of x and y, we get∫
Rk+l

f(x, y) d(x, y) =

∫
Rk

(∫
Rl

f(x, y) dy

)
dx =

∫
Rl

(∫
Rk

f(x, y) dx

)
dy.

This completes the proof of the Fubini theorem.

For any functions ϕ and ψ ≥ 0, the truncation of ϕ by ψ, in notation mid(−ψ,ϕ, ψ), is
defined by

mid(−ψ,ϕ, ψ)(x) :=

{
min{ψ(x), ϕ(x)} if ϕ(x) ≥ 0

max{−ψ(x), ϕ(x)} if ϕ(x) ≤ 0.

We need the following two corollaries of DCT.
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Lemma 3. Let f : Rk → R be such that there exists a sequence fn ∈ L such that lim fn = f
a.e. Assume further that |f | ≤ g for some g ∈ L. Then f ∈ L.

Proof. Note the difference in hypothesis of DCT and this lemma. In DCT, the fn’s are
dominated whereas here f is dominated.

Let hn be the truncation of fn by g, i.e., hn := max{−g,min{fn, g}}. Then hn ∈ L.
Clearly, limhn = f a.e. and |hn| ≤ g. Hence DCT can be applied to get the result.

The above also suggests a new concept:

f is said to be measurable iff for any bounded interval I and any nonnegative constant c
the truncated function mid(−cχI , f, cχI) is in L. An equivalent condition for measurability
of f is that the truncation of f by any nonnegative integrable function ϕ, viz., mid(−ϕ, f, ϕ)
is integrable. (Exercise: Prove the equivalence of these two definitions.)

An important fact we need below, which follows from the corollary of the DCT, is

Proposition 4. Let f be measurable and assume that there exists an integrable function
g such that |f | ≤ g a.e., then f is integrable. In particular, if f is measurable and |f | is
integrable, then f is integrable.

Proof. Just by definition: For, measurability means that mid(−g, f, g) ≡ f is integrable!

A partial converse to Fubini’s theorem is Tonelli’s theorem. It is perhaps more useful in
practice than Fubini’s theorem.

Theorem 5 (Tonelli). Let f : Rk+l → R be a measurable function. Assume that one of the
repeated integrals of |f | exists. Then f is integrable and we have∫

Rk+l

f(x, y) d(x, y) =

∫
Rk

(∫
Rl

f(x, y) dy

)
dx =

∫
Rl

(∫
Rk

f(x, y) dx

)
dy.ubini3

Proof. We assume that
∫
Rk

(∫
Rl |f |(x, y) dy

)
dx exists.

Since f is measurable so is |f |. We let In to be the product of intervals of the form
[−n, n] in Rk,Rl,Rk+l. We also let ψn(x, y) be n-times the characteristic function of In
in the product space. Then, by measurability of |f |, we have fn := mid(−ψn, |f |, ψn) ∈
L(Rk+l). Clearly fn increases and converges to |f |. Fubini theorem applied to fn yields that∫
Rk+l fn(x, y) d(x, y) =

∫
Rk

(∫
Rl fn(x, y) dy

)
dx =

∫
Rl

(∫
Rk fn(x, y) dx

)
dy. Thus the MCT

implies that |f | is integrable. Now Proposition 4 finishes the proof.
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