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Definition 1. Let X be a set, G a group. A group action of G on X is a map α : G×X → X
given by
α(ab, x) = α(a, α(b, x)) for all a, b ∈ G, x ∈ X.
α(e, x) = x for all x ∈ X.

We usually drop α and write α(g, x) as g · x or gx. Then (1) reads: (ab) · (x) = a · (b · x).
We also say G acts on X and X is a G–set (when the action α is understood).

The orbit of G in X is a set of the form G · x = {g · x | g ∈ G} for a fixed x ∈ X. G · x
is also called the orbit of x, denoted by Ox. Note that y ∈ Gx iff y = gx for some g ∈ G
iff x = g−1y for some g ∈ G iff x ∈ Gy. Thus Gx = Gy iff Ox = Oy. Define an equivalence
relation x ∼ y iff Gx = Gy. Its equivalence classes are orbits of G in X and X is the disjoint
union of orbits of G.

Example 2. GL(n,R) = {n× n invertible matrices } acts on Rn.

Example 3. O(n,R) = {n× n orthogonal matrices } acts on Rn.

Example 4. If X is any set, SX , the symmetry group (of all bijections of X) acts on X.

Example 5. Any group G acts on itself via left action: X = G, G × X → X given by
(g, x) 7→ g · x, the group multiplication.

Example 6. A group G acts on itself via conjugation: (g, x) 7→ gxg−1. The orbits are called
conjugacy classes.

Ex. 7. Find the orbits in the above examples.

Ex. 8. What are the orbits in Example 6 if G is abelian?

Example 9. Let H ≤ G. Let H act on X = G via the left action: (h, x) 7→ hx. The orbits
are of the form Hx for some x ∈ G. Note that Hx = Hy iff xy−1 ∈ H. Write G = ∪x∈GHx.
Any two orbits are bijective via the map h→ hx. If G is finite we deduce Lagrange’s theorem.

Definition 10. G acts transitively on X if for any x, y ∈ X, there is a g ∈ G such that
gx = y. That is, there is only one orbit in X.

Ex. 11. Which of the actions in Example 2 to Example 9 are transitive?
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Definition 12. Fix x ∈ X. Let Gx := {g ∈ G | gx = x}. Then Gx is called the stabiliser
of x in G and is a subgroup. Gx is also called the isotropy subgroup of x.

Ex. 13. Let Ox = Oy. How are the stabilisers Gx and Gy related?

Ex. 14. Find the stabilisers of various elements in the above six examples.

Ex. 15. Consider Rn as the vector space of colum vector n × 1. Let GLn(R) act on Rn as
follows: (A, x) 7→ Ax, the matrix multiplication. Show that the isotropy of en is the subgroup

of the elments of the form

(
A 0
x 1

)
where A ∈ GLn−1 and x ∈ Rn−1.

Ex. 16. Let V : {(x, y) ∈ Rn × Rn : xn = yn}. Let GLn act on V as follows:

A(x, y) = (xtA,Ay).

What is the isotropy at (en, en)?

Ex. 17. Every subgroup H of a group G occurs as a stabiliser of an element in a G–set.
Hint: Let X = {Hg | g ∈ G} be the set of (right) cosets, i.e., the orbits of H in G with
respect to the left action of H on G. Then |X| = [G : H], the index of H in G. G acts on X
by (a,Hg) 7→ Hga−1. (If Y is the set of left cosets, i.e., X = {gH | g ∈ G}, then G on Y
by (a, gH) 7→ agH). This action is transitive. If x = H ∈ X, then the stabiliser of x is H.

Definition 18. Let X and Y be two G–sets. Then these are G–isomorphic if there is a
bijection f : X → Y such that g · f(x) = f(g · x) for all g ∈ G, x ∈ X. Draw a commutative
diagram.

Ex. 19. Let G act transitively on X. Then X is G–isomorphic to G/H (the set of left cosets
of H in G) for some subgroup H ≤ G. Hint: H is the stabiliser of a fixed x ∈ X.

Ex. 20. |Gx| = [G : Gx]. (G acts on X, x ∈ X).

Definition 21. Let G act on itself via conjugation. Then Gx = {g ∈ G | gx = xg} is
known as the centraliser Zx(G) of x ∈ G. G · x = Cx is called the conjugacy class of x
in G. Note that |Cx| is a divisor of |G| if G is finite. If G is finite and {C1, . . . , Cr} are
disjoint conjugacy classes, then |G| = |C1|+ · · ·+ |Cr| is called the class equation. Note that
G = |ZG|+

∑r
i=1[G : Gxi ] if {G · xi} are the distinct conjugacy classes of G with |G · xi| > 1.

Ex. 22. Use the class equation to prove that if |G| = pr, then Z(G), the center of G is
non-trivial.

Ex. 23. Let G act on X and Y . Define a G action on X × Y in an obvious way. Relate the
stabiliser of (x, y) with those of x and y.

Ex. 24. Let G be a group and let H,K be subgroups of index r and s respectively. Show
that H ∩K has index at most rs.

Ex. 25. Let G be a group, H, K subgroups of G of index r. Assume H and K are conjugate.
Show that H ∩K has index at most r(r − 1).

Ex. 26. Let {Ci} be the conjugacy classes in a group. Show that each product CiCj is a
union of conjugacy classes.
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Ex. 27. Determine all groups with only two conjugacy classes.

Ex. 28. Let H ≤ G. Let X = {xH | x ∈ G}. Let G act on X by (g, xH) 7→ gxH. Prove
that H is a normal subgroup of G iff every H–orbit in X is a singleton.

Ex. 29. Let |G| < ∞ and let p be the smallest prime dividing |G|. Let H ≤ G such that
[G : H] = p. Show that H is a normal subgroup of G.

Remark 30. Recall the class equation: G acts on itself via conjugation. Therefore |G| =
|O1|+ · · · |Or|, |Oi| =

{
gxg−1 | g ∈ G

}
= Ox. |G| := |Z(G)|+

∑r
i=1 |[G : CG(x)]| in classical

notation.

Ex. 31. Let p be a prime and |G| = pn. Then G has a non-trivial centre. Hint: Apply class
equation. Note that x ∈ Z(G) iff |Ox| = 1.

Ex. 32. If p is a prime and |G| = p2, then G ' Z/p2 or Z/p× Z/p.

Ex. 33. Let H ≤ G with [G : H] = n. Show that H contains a normal subgroup K of G
such that [G : K] ≤ n!.

Ex. 34. Let G be a simple group (i.e., having no proper normal subgroup) with a subgroup
H of finite index n > 1. Show that |G| ≤ n!.
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