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Abstract

The aim of this article is to bring to the attention of college teachers a generalized
Riemann integral called Henstock-Kurzweil integral. This has attracted a growing interest
in recent years. New introductory textbooks on real analysis have a chapter on this topic.
Leading American universities have started teaching this to undergraduate students, after
a recommendation by a Committee appointed by the National Science Foundation of USA.

Let us recall the definition of Riemann integral. Riemann’s definition in 1867 can be
summarized as follows: ∫ b

a
f(t) dt := lim

∑
f(ti)(xi − xi−1).

Given a bounded function f : [a, b] → R, a more precise definition is as follows: we say that
f is Riemann integrable on [a, b] if there exists a real number α such that for a given ε > 0,
we can find δ > 0 with the property that for any partition

P : a = x0 < x1 < · · · < xn−1 < xn = b, with max{xi − xi1} < δ

we have, ∣∣∣∣∣α−
n∑

i=1

f(ti)(xi − xi−1)

∣∣∣∣∣ < ε, for any choice of ti ∈ [xi−1, xi].

The Henstock-Kurzweil integral is a straightforward generalization of this.

First a couple of definitions. By a tagged partition of [a, b], we mean a partition P as above
with ti ∈ [xi−1, xi] chosen. The points ti are called the tags. A positive function δ : [a, b]→ R
is called a gauge. We say that a tagged partition is δ-fine if xi − xi−1 < δ(ti) for all i. Now
we are ready to define HK-integrability.

Definition 1. A function f : [a, b] → R is said to be HK-integrable if there exists a real
number α with the following property:

For a given ε > 0 there exists a gauge δ such that for any δ-fine partition of [a, b],
we have ∣∣∣∣∣α−

n∑
i=1

f(ti)(xi − xi−1)

∣∣∣∣∣ < ε.
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The real number α, if it exists is unique and is called the HK-integral of f and let us denote
it by HK-

∫ b
a f(t) dt.

Note that there is no assumption on the boundedness of f . The Riemann integrability
insists on finding a constant δ in the above formulation along with the boundedness of f .
What makes the HK-integral powerful is the relaxation of δ to be a positive function. In fact,
in application, we select δ(t) to be extra small at points t near which the function f does
not behave well. See examples below as well as the proof of Theorem 4. In geometric terms,
while the Riemann integral demands that approximating rectangles have width smaller than
a fixed constant width, HK-integral allows us to choose thinner rectangles near troublesome
points.

For the definition to work, given a gauge δ, we need to assure the existence of a δ-
fine partition. This follows by an easy application of the nested interval theorem. For, if
the interval [a, b] admits no δ-fine partition, neither does any of its bisected subintervals
[a, (a+b)/2] and [(a+b)/2, b]. Continuing this way, we produce a sequence of nested intervals
Jn such that `(Jn) = 2−n(b − a) none which admit a δ-fine partition. Let c ∈ ∩Jn. Then
for sufficiently large n, `(Jn) < δ(c)/2. For such n, the interval Jn itself is a δ-fine partition,
contradicting our choice of Jn’s.

Example 2. Let f be the characteristic function of the rationals in [0, 1]. We claim that f
is HK-integrable with integral 0. Let ε > 0 be given. Let {rn} be an enumeration of the
rationals in [0, 1]. We define δ(t) = 1 if t /∈ Q and δ(rn) = 2−n−1ε. Then in the HK-sum of
any δ-fine tagged partition

∑n
k=1 f(tk)(xk−xk−1), the only nonzero terms occur when the tag

tk = rn for some n. It is possible that the tag may be common to two adjacent subintervals.
Hence |

∑n
k=1 f(tk)(xk − xk−1)| <

∑∞
k=1

2
2n+1 ε = ε. Hence the claim.

Example 3. Let f : [0, 1] → R be defined as f(1/n) = n and f(t) = 0 at other points. We

claim that HK −
∫ 1
0 f(t) dt = 0. Given ε > 0, we define δ(t) = ε/2n+1n and δ(t) = 1 at other

points. Reasoning as above, we see that, for any δ-fine partition,∣∣∣∣∣
n∑

k=1

f(t)(xi − xi−1)

∣∣∣∣∣ < ε.

Note that this function is unbounded.

It is easily seen that if a function is Riemann integrable, then it is HK-integrable and both
integrals are the same. What is more is the following: f is Lebesgue integrable iff both f
and |f | are HK-integrable and in such a case the Lebesgue integral of f coincides with the
HK-integral of f .

We conclude this article with a very satisfactory fundamental theorem of calculus.

Theorem 4. Let f : [a, b] → R be continuous and differentiable on [a, b]. Then f ′ is HK-

integrable on [a, b] and we have HK-
∫ b
a f
′(t) dt = f(b)− f(a).

Proof. Let ε > 0 be given. By the differentiability of f at t ∈ [a, b], there exists δ(t) > such
that for all x ∈ [a, b] with |x− t| < δ(t), we have∣∣∣∣f(x)− f(t)

x− t
− f ′(t)

∣∣∣∣ < ε.
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This can be rewritten as ∣∣f(x)− f(t)− f ′(t)(x− t)
∣∣ < ε |x− t| . (1)

Now if x < t < y and t− x < δ(t) and y − t < δ(t), then we have∣∣f(y)− f(t)− f ′(t)(y − t)
∣∣ < ε(y − t) (2)∣∣f(t)− f(x)− f ′(t)(t− x)
∣∣ < ε(t− x). (3)

Form these equations it follows, for x, t, y as above, that∣∣f(y)− f(x)− f ′(t)(y − x)
∣∣ < 2ε(y − x). (4)

We take the above δ as a gauge. Let us consider any δ-fine partition. Observe that the
telescoping sum

f(b)− f(a) =
n∑

k=1

(f(xk)− f(xk−1)) .

Hence we have∣∣∣∣∣f(b)− f(a)−
n∑

k=1

f ′(tk)(xk − xk−1)

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=1

(f(xk)− f(xk−1)− f ′(tk)(xk − xk−1))

∣∣∣∣∣ .
The right hand sum is, by the triangle inequality and by (4) is less than or equal to 2ε(b−a).
The result follows.

I hope that your appetite for Henstock-Kurzweil integral is whetted. For further details,
consult references.
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