Fundamental Theorem of Calculus in HK-Integral

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Abstract

The aim of this article is to bring to the attention of college teachers a generalized Riemann integral called Henstock-Kurzweil integral. This has attracted a growing interest in recent years. New introductory textbooks on real analysis have a chapter on this topic. Leading American universities have started teaching this to undergraduate students, after a recommendation by a Committee appointed by the National Science Foundation of USA.

Let us recall the definition of Riemann integral. Riemann's definition in 1867 can be summarized as follows:

$$\int_{a}^{b} f(t) dt := \lim \sum f(t_{i})(x_{i} - x_{i-1}).$$

Given a bounded function $f: [a, b] \to \mathbb{R}$, a more precise definition is as follows: we say that f is Riemann integrable on [a, b] if there exists a real number α such that for a given $\varepsilon > 0$, we can find $\delta > 0$ with the property that for any partition

$$P: a = x_0 < x_1 < \dots < x_{n-1} < x_n = b, \text{ with } \max\{x_i - x_{i_1}\} < \delta$$

we have,

$$\left|\alpha - \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})\right| < \varepsilon, \text{ for any choice of } t_i \in [x_{i-1}, x_i].$$

The Henstock-Kurzweil integral is a straightforward generalization of this.

First a couple of definitions. By a *tagged partition* of [a, b], we mean a partition P as above with $t_i \in [x_{i-1}, x_i]$ chosen. The points t_i are called the tags. A positive function $\delta \colon [a, b] \to \mathbb{R}$ is called a *gauge*. We say that a tagged partition is δ -fine if $x_i - x_{i-1} < \delta(t_i)$ for all i. Now we are ready to define HK-integrability.

Definition 1. A function $f: [a, b] \to \mathbb{R}$ is said to be HK-integrable if there exists a real number α with the following property:

For a given $\varepsilon > 0$ there exists a gauge δ such that for any δ -fine partition of [a, b], we have

$$\left|\alpha - \sum_{i=1}^{n} f(t_i)(x_i - x_{i-1})\right| < \varepsilon.$$

The real number α , if it exists is unique and is called the HK-integral of f and let us denote it by HK- $\int_a^b f(t) dt$.

Note that there is no assumption on the boundedness of f. The Riemann integrability insists on finding a constant δ in the above formulation along with the boundedness of f. What makes the HK-integral powerful is the relaxation of δ to be a positive function. In fact, in application, we select $\delta(t)$ to be extra small at points t near which the function f does not behave well. See examples below as well as the proof of Theorem 4. In geometric terms, while the Riemann integral demands that approximating rectangles have width smaller than a fixed constant width, HK-integral allows us to choose thinner rectangles near troublesome points.

For the definition to work, given a gauge δ , we need to assure the existence of a δ fine partition. This follows by an easy application of the nested interval theorem. For, if the interval [a, b] admits no δ -fine partition, neither does any of its bisected subintervals [a, (a+b)/2] and [(a+b)/2, b]. Continuing this way, we produce a sequence of nested intervals J_n such that $\ell(J_n) = 2^{-n}(b-a)$ none which admit a δ -fine partition. Let $c \in \cap J_n$. Then for sufficiently large n, $\ell(J_n) < \delta(c)/2$. For such n, the interval J_n itself is a δ -fine partition, contradicting our choice of J_n 's.

Example 2. Let f be the characteristic function of the rationals in [0, 1]. We claim that f is HK-integrable with integral 0. Let $\varepsilon > 0$ be given. Let $\{r_n\}$ be an enumeration of the rationals in [0, 1]. We define $\delta(t) = 1$ if $t \notin \mathbb{Q}$ and $\delta(r_n) = 2^{-n-1}\varepsilon$. Then in the HK-sum of any δ -fine tagged partition $\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})$, the only nonzero terms occur when the tag $t_k = r_n$ for some n. It is possible that the tag may be common to two adjacent subintervals. Hence $|\sum_{k=1}^{n} f(t_k)(x_k - x_{k-1})| < \sum_{k=1}^{\infty} \frac{2}{2^{n+1}}\varepsilon = \varepsilon$. Hence the claim.

Example 3. Let $f: [0,1] \to \mathbb{R}$ be defined as f(1/n) = n and f(t) = 0 at other points. We claim that $HK - \int_0^1 f(t) dt = 0$. Given $\varepsilon > 0$, we define $\delta(t) = \varepsilon/2^{n+1}n$ and $\delta(t) = 1$ at other points. Reasoning as above, we see that, for any δ -fine partition,

$$\left|\sum_{k=1}^n f(t)(x_i - x_{i-1})\right| < \varepsilon.$$

Note that this function is unbounded.

It is easily seen that if a function is Riemann integrable, then it is HK-integrable and both integrals are the same. What is more is the following: f is Lebesgue integrable iff both f and |f| are HK-integrable and in such a case the Lebesgue integral of f coincides with the HK-integral of f.

We conclude this article with a very satisfactory fundamental theorem of calculus.

Theorem 4. Let $f: [a, b] \to \mathbb{R}$ be continuous and differentiable on [a, b]. Then f' is HK-integrable on [a, b] and we have $HK - \int_a^b f'(t) dt = f(b) - f(a)$.

Proof. Let $\varepsilon > 0$ be given. By the differentiability of f at $t \in [a, b]$, there exists $\delta(t) >$ such that for all $x \in [a, b]$ with $|x - t| < \delta(t)$, we have

$$\left|\frac{f(x) - f(t)}{x - t} - f'(t)\right| < \varepsilon.$$

This can be rewritten as

$$\left|f(x) - f(t) - f'(t)(x - t)\right| < \varepsilon \left|x - t\right|.$$
(1)

Now if x < t < y and $t - x < \delta(t)$ and $y - t < \delta(t)$, then we have

$$\left| f(y) - f(t) - f'(t)(y-t) \right| < \varepsilon(y-t)$$
⁽²⁾

$$\left|f(t) - f(x) - f'(t)(t-x)\right| < \varepsilon(t-x).$$
(3)

Form these equations it follows, for x, t, y as above, that

$$\left|f(y) - f(x) - f'(t)(y - x)\right| < 2\varepsilon(y - x).$$
(4)

We take the above δ as a gauge. Let us consider any δ -fine partition. Observe that the telescoping sum

$$f(b) - f(a) = \sum_{k=1}^{n} (f(x_k) - f(x_{k-1}))$$

Hence we have

$$\left| f(b) - f(a) - \sum_{k=1}^{n} f'(t_k)(x_k - x_{k-1}) \right| = \left| \sum_{k=1}^{n} (f(x_k) - f(x_{k-1}) - f'(t_k)(x_k - x_{k-1})) \right|.$$

The right hand sum is, by the triangle inequality and by (4) is less than or equal to $2\varepsilon(b-a)$. The result follows.

I hope that your appetite for Henstock-Kurzweil integral is whetted. For further details, consult references.

REFERENCES

1. R. Bartle and Sherbert, Introduction to Real Analysis, 3rd ed., Wiley International.

2. R. Gordon, The Integrals of Lebesgue, Denjoy, Perron, and Henstock, Amer. Math. Soc., 1994