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Abstract

In this note we give a simple, elementary short proof of the Jordan-Brouwer Separation
theorem and the orientability of hypersurface in Rn. In fact, both are easy consequences
of the main result which says that any compact hypersurface is a level set of a smooth
function defined on all of Rn.

In this note we shall prove the following result.

Theorem 1. Let S be a compact hypersurface in Rn. Then there exists a smooth function
f : Rn → R such that S is a level set, i.e., S = f−1(0) with ∇f(x) 6= 0 for all x ∈ S.

This global result has two well-known results as corollaries. Before stating them, we recall
the definition of orientability of a hypersurface in Rn.

Let S ⊆ Rn be a hypersurface. S is said to be orientable iff there exists a continuous
nowhere vanishing normal field on S. For example let f : Rn → R be smooth with 0 as a
regular value of the image and S = f−1(0), then S is orientable. For, we have x 7→ ∇f(x) is
a nowhere vanishing continuous normal field on S. Here ∇f(x) denotes the gradient of f at
x.

Theorem 2. Any compact hypersurface in Rn is orientable.

Proof. This is immediate from the main theorem and the characterization of orientability for
a hypersurface.

Theorem 3. [Jordan - Brouwer separation theorem] Let S ⊆ Rn be a compact con-
nected hypersurface. Then Rn \ S has only two connected components.

Note that the we have not assumed S to be orientable in the above result.

The proof of Theorem 1 depends on three elementary lemmas, the third being the tubular
neighbourhood theorem. We say that two functions f, g : X → R agree locally up to sign if
for every point x ∈ X, there exists a neighbourhood U such that either f(y) = g(y) for all
y ∈ U or f(y) = −g(y) for all y ∈ U . We write this as f = ±g on U .

1



Lemma 4. Let X be any connected space. Let f , g : X → R be maps (not necessarily
continuous) that agree locally up to sign and such that the interior of f−1(0) and that of
g−1(0) are empty. Then f = g or f = −g on X.

Proof. Let E = {x ∈ X : f(x) = g(x)}. Let x be in the interior U of the closure of E. Let V
be any open set such that x ∈ V and f = ±g on V . If f(z) = 0 for all z ∈ U ∩V , then f−1(0)
has nonempty interior. Thus there exists z ∈ U ∩ V such that f(z) 6= 0. Hence f(y) = g(y)
for all y ∈ V so that V ⊂ U . Hence the open set U is also closed. Since X is connected,
either U = ∅ or U = X. Repeating the above argument with −g in place of g, we see that
the interior of F := {x ∈ X : f(x) = −g(x)} is either empty or equal to X. Since X = E ∪F ,
the result follows.

We need the following exercise in the next lemma.

Ex. 5. Let K ⊂ Rn be compact and A ⊂ Rn be closed. Assume further that K ∩ A = ∅.
Then there exist x ∈ K and a ∈ A such that d(K,A) = d(x, a). In particular, d(K,A) > 0.
(You may need Bolzano-Weierstrass.)

Lemma 6. Let {Uα} be an open covering of Rn and fα : Uα → R be smooth maps such that
(1) the interior of f−1

α (0) = ∅ and (2) if Uα ∩ Uβ 6= ∅ then fα and fβ agree locally up to sign
on Uα ∩ Uβ. Then there exists a smooth function f : Rn → R such that f = ±fα on Uα.

Proof. We let U0 denote a member of {Uα} with 0 ∈ U0. We let B0 denote an open ball
centred at 0 such that B0 ⊂ U0. We fix B0 in the ensuing discussion and the corresponding
f0. Let x ∈ Rn. Consider the line segment [0, x] := {tx : 0 ≤ t ≤ 1} joining 0 and x. Let
[0, x] ⊂ Ω := B0 ∪ B1 ∪ · · · ∪ Br be a covering by means of open balls such that each Bi is
a subset of some Uαi of the given covering. We may arrange the matters in such a way that
the following conditions are met: (i) There are no superfluous balls, i.e. each Bi meets [0, x].
(ii) Successive balls do intersect, i.e. Bi−1 ∩ Bi 6= ∅. (iii) Only successive balls intersect, i.e.
if Bi ∩Bj 6= ∅, then i and j are consecutive.

We recursively choose fi as follows. fα1 , the function corresponding to Uα1 ⊃ B1 agrees
locally up to sign on the connected set B0 ∩ B1. We choose f1 to be +fα1 (resp. −fα1), the
sign being chosen so that f1 agrees with f0 on the connected set B0 ∩ B1. By induction we
choose fi |Bi= fαi |Uαi , the sign being chosen so that fi agrees with fi−1 on the connected
set Bi−1 ∩ Bi. We define f(x) := fr(x), the last of the fi’s. We need to show that f(x) is
well-defined.

Suppose [0, x] ⊂ Ω′ := B0 ∪ B′1 ∪ · · · ∪ B′s. (Note that the 0-th ball is fixed always.) We
denote by f ′j the functions chosen as above. We need to show that fr(x) = f ′s(x). Note that
the set Ω∩Ω′ := (B0∪B1∪· · ·∪Br)∩ (B0∪B′1∪· · ·∪B′s) is connected. By Lemma 4, fr = f ′s
on this set, since f0 = f ′0. In particular, fr(x) = f ′s(x) so that f(x) is well-defined.

We now show that f is smooth. Note that [0, x] is compact, Rn \ Ω is closed and they
are disjoint subsets of Rn. Hence d([0, x],Rn \ Ω) > 2ε > 0, by Exercise 1. If y ∈ B(x, ε)
and Ω′′ := B0 ∪ B′′1 ∪ · · ·B′′t ⊃ [0, y], where each B′i has radius less than ε and centre on
[0, y], then Ω′′ ⊂ Ω. The corresponding function f ′′t equals fr |Ω′′ by Lemma 4. Consequently,
f(y) = f ′′t (y) = fr(y). Hence f agrees with fr on B(x, ε) and hence is smooth.
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The following lemma is a version of tubular neighbourhood theorem and is stated in this
form as we do not assume the orientability of S.

Lemma 7 (Tubular Neighborhood Theorem). Let S be a compact connected (not necessarily
orientable) hypersurface in Rn. Given δ, we denote by Uδ(S) (respectively, Uδ[S]) the union
of all open (respectively, closed) line segments of length 2δ that are normal to the surface S
and centred at a point of S. There exists an ε such that any two such line segments with
distinct centres are disjoint. The set U2ε(S) is called an ε-tubular neighbourhood of S.

Proof. Recall that if S is a hypersurface and x ∈ S, there is a neighbourhood Ux on which
there is a smooth unit normal field Nx. If we further assume that Ux is connected then there
are exactly two such smooth unit normal fields, each being the negative of the other. We
fix one of them and denote it by Nx or N if there is no possible source of confusion. We
consider the map ϕ := ϕx : Ux × R → Rn given by ϕ(z) := z + tN(z), for z ∈ Ux. We claim
that ϕ is a local diffeomorphism at (x, 0). To see this, we need to show that the derivative
Dϕ(x, 0) : TxS ×R→ Rn is nonsingular. We achieve this by showing that the said derivative
maps a basis of the domain onto a basis of the range. Let v ∈ TxS. We choose a smooth
curve c : (−ε, ε)→ S such that c(0) = x and c′(0) = v. Let γ(s) := (c(s), 0) ∈ S × R. Then

Dϕ(x, 0)(v, 0) =
d

ds
(ϕ ◦ γ(s)) |s=0=

d

ds
((c(s), 0)) |s=0= (c′(0), 0) = (v, 0).

Also, if we let σ(s) := (x, s) then

Dϕ(x, 0)(0, 1) =
d

ds
(ϕ ◦ σ(s)) |s=0= (0, 1).

These computations shows that the derivative Dϕ(x, 0) is nonsingular. Hence ϕ maps a
neighbourhood of (x, 0) diffeomorphically onto a neighbourhood of x in Rn. In particular,
there exists a neighbourhood Ux of x in S and an εx > 0 such that ϕ is one-to-one on
Ux × (−εx, εx).

After this differential argument, we complete the proof by a compactness argument. Let
us suppose that there exists no ε as stated in the theorem. Then there exists a sequence of
distinct pairs (xk, sk) and (yk, tk) in S× (−1/k,+1/k) such that xk+skN(xk) = yk+ tkN(yk)
for all k ∈ N. By compactness, after passing to subsequences (possibly twice), we may assume
that xk → x and yk → y in S. We claim that x = y:

x = ϕ(x, 0) = limϕ(xk, sk) = limϕ(yk, tk) = ϕ(y, 0) = y.

Fix a neighbourhood Ux×(−εx, εx) of (x, 0) on which ϕ is one-to-one. Then, for all sufficiently
large k, (xk, sk) and (yk, tk) lie in this neighbourhood. This contradicts the one-oneness of ϕ
on Ux. Whence we conclude that there exists an ε as required.

Proof of Theorem 1. Let ε be such that U2ε(S) is a 2ε-tubular neighbourhood of S.
Observe that Uε[S] is a closed subset of Rn. Fix a smooth function α : R → R such that
α(0) = 0, α′(0) = 1, α′(t) > 0 for 0 ≤ t < ε, α(t) = ε for t ≥ ε and finally α(−t) = −α(t).
We wish to apply Lemma 6. First of all, we cover S with a family of neighbourhoods {Vi}
on which a smooth unit normal field ui is defined. We fatten members of this family to get
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open sets in Rn: Let Ui := {x + tui(x) : x ∈ Vi, |t| < 2ε}. This family {Ui} along with
U∗ := Rn \ Uε[S] forms an open cover of Rn. On Ui we define fi(x + tui(x)) := α(t). Also,
f∗ : U∗ → R is defined to be the constant ε. We easily check that the hypothesis of Lemma 6
are satisfied so that we obtain a smooth function f : Rn → R with f−1(0) = S. Also, a simple
calculation shows that grad f(x) := ±u(x) 6= 0 for all x ∈ S.

Theorem 3 is an immediate consequence of Theorem 1 and the following lemma.

Lemma 8. Let f : Rn → R be smooth. Let S := f−1(0) 6= ∅. Assume that grad f(x) 6= 0
for x ∈ S. Assume further that S is compact and connected. Then Rn \ S has two connected
components and S is their common boundary.

Proof. Let A := {x ∈ Rn : f(x) > 0} and B := {x ∈ Rn : f(x) < 0}. Then A and B are
open, disjoint and Rn \ S = A ∪ B. We claim that A and B are connected. Observe that A
contains the connected closed subset C := {x + t grad f(x) : x ∈ S, 0 < t < 2ε}. Let y ∈ A.
Let p be point on Uε[S] such that d(y, Uε[S]) = d(y, p). (Such a p exists in view of Exercise
1.) Note that the line segment [p, y] ⊂ A. Thus any point y ∈ A either lies in C or can be
joined to a point on C by means of a line segment. Consequently, A is connected. Similarly,
one shows that B is connected.

Letting ∂E denote the (topological) boundary of E, we observe that f(∂A) ⊂ S, as f
must vanish on ∂A. Similarly, ∂B ⊂ S. Since any neighbourhood (in Rn) of a point x ∈ S
meets both A and B, we see that S ⊂ ∂A ∩ ∂B. Hence S = ∂A = ∂B.
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