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Theorem 1. Let U ⊂ X × Y be open. Let f : U → Z be continuous. Assume that
Dyf(x, y) exists on U . Let (x0, y0) ∈ U be such that f(x0, y0) = 0. Assume further that
Dyf(x0, y0) : Y → Z is continuous linear isomorphism so that Dyf(x0y0)

−1 : Z → Y is also
continuous.

Then there exist r, ρ > 0 such that B(x0, r)×B(y0, ρ) ⊂ U and a function u : B(x0, r)→
B(y0, ρ) such that (i) u(x0) = y0 and f(x, u(x)) = 0 for all x ∈ B(x0, r).

If we further assume that f is continuously differentiable, then u is also C1 and we have

Du(x) = −Dyf(x, y)−1 ◦Dxf(x, u(x)), for x ∈ B(x0, r).

Let X, Y and E be Banach spaces and let U ⊂ X × Y be open. The statement and
the proof goes through when X, Y and E are Banach spaces. For the standard version, the
reader may assume that X := Rm and Y = E = Rk. Any element of Rm × Rk is denoted by
(x, y) with x ∈ Rm and y ∈ Rk. The condition (3) of the theorem in finite dimensional case
can be recast as saying that Dyf(x0, y0) is a linear isomorphism of Rk.

Theorem 2. Let f : U ⊂ X × Y → E be such that
(1) f(x0, y0) = 0 for some (x0, y0) ∈ U ,
(2) Dyf , the partial derivative of f with respect to the second variable y, exists on U ,
(3) the map Dyf(x0, y0) : Y → E is continuous and bijective
(4) f is continuous at (x0, y0).

Then there exist r, ρ such that for every x ∈ B(x0, ρ), there exists a unique y(x) ∈ Y such
that y(x) ∈ B(y0, r) and f(x, y(x)) = 0.

Furthermore, if f is Ck around (x0, y0) so is the map x 7→ y(x) around x0.

Strategy: We begin with some preliminary remarks that may shed some light on the
hypothesis and the proof of the theorem. To start with, we may assume without loss of
generality that (x0, y0) = (0, 0).

We first look at the case when X,Y,E are R and f is real analytic in U . Then we have
the power series expansion of f near (0, 0):

f(x, y) = f(0, 0) +Dxf(0, 0)x+Dyf(0, 0)y +O(2),
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where O(2) stands for higher order terms. By hypothesis, f(x, y) = 0. Since we are looking
at the set {(x, y) : f(x, y) = 0}, we get Dxf(0, 0)x+Dyf(0, 0)y+O(2) = 0. This suggests to
us that if we assume that Dyf(0, 0) is invertible, we can express y as follows:

y = −Dyf(0, 0)−1 (Dxf(0, 0)x+O(2)) . (1)

This tells us that we may try to adapt Newton’s method of locating zeros. We recall the
method briefly. Assume that x0 is an approximate zero of y(x) = 0 and that y has nonvan-
ishing derivative around x0. Then we inductively define

xn+1 := xn −
f(xn)

f ′(xn)
, for n ≥ 0.

Then xn “converges” to a zero of y (in ‘good’ cases). These ideas suggest that if we define

yn+1(x) := yn(x)−Dyf(0, 0)−1f(x, yn(x)), for n ≥ 0 where y0 = 0, (2)

then yn may converge to a solution of f(x, y(x)) = 0. This is the programme we implement
by employing the contraction mapping theorem. Shedding of indices, we may rewrite (2) as
follows:

y := y −Dyf(0, 0)−1f(x, y(x)), that is, Dyf(0, 0)y = Dyf(0, 0)y − f(x, y). (3)

If we define g(x, y) := Dyf(0, 0)y − f(x, y), then f(x, y) = 0 iff y = Dyf(0, 0)−1g(x, y). Thus
if we define

Tx(y) := Dyf(0, 0)−1f(x, y),

the required solution y(x) is got as a fixed point of Tx. We investigate whether the contraction
mapping theorem can be applied.

Proof. We assume without loss of generality that (x0, y0) = (0, 0). Let B := Dyf(0, 0). By
hypothesis, B is a continuous bijection of Y onto E.

Let g(x, y) := By − f(x, y). Note that Dyg(x, y) = Dyf(0, 0) − Dyf(x, y), so that
Dyg(0, 0) = 0. Since f and Dyf are continuous at 0, we can apply mean value inequal-
ity to g. By the mean value inequality, we have

‖g(x, y)− g(x, z)‖ ≤ sup
0≤t≤1

‖Dyg(x, z + t(y − z))‖ ‖y − z‖

≤ sup
0≤t≤1

‖Dyf(0, 0)−Dyf(x, z + t(y − z))‖ ‖y − z‖ . (4)

If we now assume that ‖x‖ , ‖y‖ , ‖z‖ ≤ r, then (4) implies that

‖g(x, y)− g(x, z)‖ = o(1), as r → 0, (5)

by the continuity of Dyf at 0.

Let Tx(y) := B−1g(x, y). We have

‖Txy − Txz‖ ≤ o(1)
∥∥Dyf(0, 0)−1

∥∥ ‖y − z‖ ≤ 2−1 ‖y − z‖ . (6)
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Thus, the family {Tx} is a family of uniformly contraction maps, (uniformly in x) of the
complete metric space B[0, r] to itself. The contraction mapping theorem now yields the
existence and the uniqueness of the function y.

We now establish the continuity of y as follows, where we shall write T (x, y) for Txy etc.

‖y(x+ h)− y(x)‖ = ‖T (x+ h, y + h)− T (x, y‖
= ‖T (x+ h, y + h)− T (x+ h, y)‖+ ‖T (x+ h, y)− T (x, y)‖
≤ 2−1 ‖y(x+ h)− y(x)‖+ ‖T (x+ h, y)− T (x, y)‖ , by (6).

Transferring the first term on the right to the left side, we obtain

‖y(x+ h)− y(x)‖ ≤ 2 ‖T (x+ h, y(x))− T (x, y(x))‖ . (7)

We now show that the map x 7→ y(x) is Lipschitz. We start with (7).

‖y(x+ h)− y(x)‖ ≤ 2 ‖T (x+ h, y(x))− T (x, y(x))‖
≤ 2

∥∥Dyf(0, 0)−1 [f(x+ h, y)− f(x, y)]
∥∥

≤
∥∥Dyf(0, 0)−1

∥∥ sup
x
‖Df(x, y)‖ ‖h‖ . (8)

We now show that x 7→ y(x) is differentiable.

0 = f(x+ th, y(x+ th))− f(x, y(x)) near (0, 0)

= Dxf(x, y(x))th+Dyf(x, y(x)) [y(x+ th)− y(x)] + o(t),

as t→ 0 by the Lipschitz continuity of y. Hence

y(x+ th)− y(x) = −tDyf(x, y(x))−1 ·Dxf(x, y(x))h+ o(t),

as t → 0. Here we have used the continuity of y, Df at (0, 0) to conclude that Dyf(x, y(x))
is invertible near (0,0). Thus the directional derivatives Dhy exist for h ∈ X and they are
given by

Dhy(x) = −Dyf(x, y(x))−1Dxf(x, y(x))h.

The continuity ofDf(x, y) implies that ofDxf(x, y) andDyf(x, y) around (0, 0). We therefore
conclude that y is C1 with

Dy(x) = −Dyf(x, y(x))−1 ◦Dxf(x, y(x)).

3


