Implicit Function Theorem for Banach Spaces

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1. Let $U \subset X \times Y$ be open. Let $f: U \to Z$ be continuous. Assume that $D_y f(x, y)$ exists on U. Let $(x_0, y_0) \in U$ be such that $f(x_0, y_0) = 0$. Assume further that $D_y f(x_0, y_0): Y \to Z$ is continuous linear isomorphism so that $D_y f(x_0 y_0)^{-1}: Z \to Y$ is also continuous.

Then there exist $r, \rho > 0$ such that $B(x_0, r) \times B(y_0, \rho) \subset U$ and a function $u: B(x_0, r) \rightarrow B(y_0, \rho)$ such that (i) $u(x_0) = y_0$ and f(x, u(x)) = 0 for all $x \in B(x_0, r)$.

If we further assume that f is continuously differentiable, then u is also C^1 and we have

$$Du(x) = -D_y f(x, y)^{-1} \circ D_x f(x, u(x)), \text{ for } x \in B(x_0, r).$$

Let X, Y and E be Banach spaces and let $U \subset X \times Y$ be open. The statement and the proof goes through when X, Y and E are Banach spaces. For the standard version, the reader may assume that $X := \mathbb{R}^m$ and $Y = E = \mathbb{R}^k$. Any element of $\mathbb{R}^m \times \mathbb{R}^k$ is denoted by (x, y) with $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^k$. The condition (3) of the theorem in finite dimensional case can be recast as saying that $D_u f(x_0, y_0)$ is a linear isomorphism of \mathbb{R}^k .

Theorem 2. Let $f: U \subset X \times Y \to E$ be such that

(1) $f(x_0, y_0) = 0$ for some $(x_0, y_0) \in U$,

- (2) $D_y f$, the partial derivative of f with respect to the second variable y, exists on U,
- (3) the map $D_y f(x_0, y_0) \colon Y \to E$ is continuous and bijective
- (4) f is continuous at (x_0, y_0) .

Then there exist r, ρ such that for every $x \in B(x_0, \rho)$, there exists a unique $y(x) \in Y$ such that $y(x) \in B(y_0, r)$ and f(x, y(x)) = 0.

Furthermore, if f is
$$C^k$$
 around (x_0, y_0) so is the map $x \mapsto y(x)$ around x_0 .

Strategy: We begin with some preliminary remarks that may shed some light on the hypothesis and the proof of the theorem. To start with, we may assume without loss of generality that $(x_0, y_0) = (0, 0)$.

We first look at the case when X, Y, E are \mathbb{R} and f is real analytic in U. Then we have the power series expansion of f near (0, 0):

$$f(x,y) = f(0,0) + D_x f(0,0)x + D_y f(0,0)y + O(2),$$

where O(2) stands for higher order terms. By hypothesis, f(x, y) = 0. Since we are looking at the set $\{(x, y) : f(x, y) = 0\}$, we get $D_x f(0, 0)x + D_y f(0, 0)y + O(2) = 0$. This suggests to us that if we assume that $D_y f(0, 0)$ is invertible, we can express y as follows:

$$y = -D_y f(0,0)^{-1} \left(D_x f(0,0) x + O(2) \right).$$
(1)

This tells us that we may try to adapt Newton's method of locating zeros. We recall the method briefly. Assume that x_0 is an approximate zero of y(x) = 0 and that y has nonvanishing derivative around x_0 . Then we inductively define

$$x_{n+1} := x_n - \frac{f(x_n)}{f'(x_n)}, \text{ for } n \ge 0.$$

Then x_n "converges" to a zero of y (in 'good' cases). These ideas suggest that if we define

$$y_{n+1}(x) := y_n(x) - D_y f(0,0)^{-1} f(x, y_n(x)), \text{ for } n \ge 0 \text{ where } y_0 = 0,$$
(2)

then y_n may converge to a solution of f(x, y(x)) = 0. This is the programme we implement by employing the contraction mapping theorem. Shedding of indices, we may rewrite (2) as follows:

$$y := y - D_y f(0,0)^{-1} f(x,y(x)), \text{ that is, } D_y f(0,0)y = D_y f(0,0)y - f(x,y).$$
(3)

If we define $g(x, y) := D_y f(0, 0)y - f(x, y)$, then f(x, y) = 0 iff $y = D_y f(0, 0)^{-1} g(x, y)$. Thus if we define

$$T_x(y) := D_y f(0,0)^{-1} f(x,y),$$

the required solution y(x) is got as a fixed point of T_x . We investigate whether the contraction mapping theorem can be applied.

Proof. We assume without loss of generality that $(x_0, y_0) = (0, 0)$. Let $B := D_y f(0, 0)$. By hypothesis, B is a continuous bijection of Y onto E.

Let g(x,y) := By - f(x,y). Note that $D_y g(x,y) = D_y f(0,0) - D_y f(x,y)$, so that $D_y g(0,0) = 0$. Since f and $D_y f$ are continuous at 0, we can apply mean value inequality to g. By the mean value inequality, we have

$$\|g(x,y) - g(x,z)\| \leq \sup_{0 \le t \le 1} \|D_y g(x,z+t(y-z))\| \|y-z\|$$

$$\leq \sup_{0 \le t \le 1} \|D_y f(0,0) - D_y f(x,z+t(y-z))\| \|y-z\|.$$
 (4)

If we now assume that $||x||, ||y||, ||z|| \le r$, then (4) implies that

$$||g(x,y) - g(x,z)|| = o(1), \text{ as } r \to 0,$$
 (5)

by the continuity of $D_y f$ at 0.

Let $T_x(y) := B^{-1}g(x, y)$. We have

$$||T_x y - T_x z|| \le o(1) ||D_y f(0,0)^{-1}|| ||y - z|| \le 2^{-1} ||y - z||.$$
(6)

Thus, the family $\{T_x\}$ is a family of *uniformly contraction maps*, (uniformly in x) of the complete metric space B[0, r] to itself. The contraction mapping theorem now yields the existence and the uniqueness of the function y.

We now establish the continuity of y as follows, where we shall write T(x, y) for $T_x y$ etc.

$$\begin{aligned} \|y(x+h) - y(x)\| &= \|T(x+h, y+h) - T(x, y)\| \\ &= \|T(x+h, y+h) - T(x+h, y)\| + \|T(x+h, y) - T(x, y)\| \\ &\leq 2^{-1} \|y(x+h) - y(x)\| + \|T(x+h, y) - T(x, y)\|, \text{ by } (6). \end{aligned}$$

Transferring the first term on the right to the left side, we obtain

$$\|y(x+h) - y(x)\| \le 2 \|T(x+h, y(x)) - T(x, y(x))\|.$$
(7)

We now show that the map $x \mapsto y(x)$ is Lipschitz. We start with (7).

$$\|y(x+h) - y(x)\| \leq 2 \|T(x+h, y(x)) - T(x, y(x))\|$$

$$\leq 2 \|D_y f(0, 0)^{-1} [f(x+h, y) - f(x, y)]\|$$

$$\leq \|D_y f(0, 0)^{-1}\| \sup_{x} \|Df(x, y)\| \|h\|.$$
 (8)

We now show that $x \mapsto y(x)$ is differentiable.

$$0 = f(x+th, y(x+th)) - f(x, y(x)) \text{ near } (0,0)$$

= $D_x f(x, y(x))th + D_y f(x, y(x)) [y(x+th) - y(x)] + o(t),$

as $t \to 0$ by the Lipschitz continuity of y. Hence

$$y(x+th) - y(x) = -tD_y f(x, y(x))^{-1} \cdot D_x f(x, y(x))h + o(t),$$

as $t \to 0$. Here we have used the continuity of y, Df at (0,0) to conclude that $D_y f(x, y(x))$ is invertible near (0,0). Thus the directional derivatives $D_h y$ exist for $h \in X$ and they are given by

$$D_h y(x) = -D_y f(x, y(x))^{-1} D_x f(x, y(x))h.$$

The continuity of Df(x, y) implies that of $D_x f(x, y)$ and $D_y f(x, y)$ around (0, 0). We therefore conclude that y is C^1 with

$$Dy(x) = -D_y f(x, y(x))^{-1} \circ D_x f(x, y(x)).$$