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The aim of this article is bring out the geometric content of the implicit function theorem
of two variables. To make it self-contained, I have included a proof of the theorem. The
exposition is aimed at students of mathematics from final year B.Sc. or first year M.Sc.

We shall look at three examples before stating the theorem.

Let us look at the function f : R2 → R given by f(x, y) := ax+ by. Assume that (a, b) 6=
(0, 0). We look at the set Sc := {(x, y) ∈ R

2 : f(x, y) = c} ≡ f−1(c). This set Sc is called the
level set of f at the level c. This is a line in R

2. Intuitively, Sc is “one dimensional”, i.e., to
locate a point (x, y) ∈ Sc, we need only one of the coordinates. For instance, if we assume
that b 6= 0 and if the x coordinate of a point in Sc is given, then its y-coordinate is given by
y = (c−ax)/b. Thus, we have a function g : R → R by setting g(x) = (c−ax)/b for all x ∈ R

so that f(x, g(x)) = c. In this case, it turns out that the level set is just the graph of the
function g : R → R.
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(x, 2x + 2) = (y, (y − 2)/2)

Figure 1: The line 2x− y + 2 = 0 as the graph of f(x) = 2x+ 2 or of g(y) = (y − 2)/2

Let us look at another example. Consider f : R2 → R where f(x, y) = x2 + y2. For c = 1,
the level set S1 contains the point (0, 1). Can we find a single function ϕ on [−1, 1] so that S1
is the graph of ϕ? An obvious choice is ϕ(x) :=

√
1− x2, where the square root is taken to be

the positive (or the negative) one for all x. Thus, if we want our resulting ϕ to be a function,
then we need to restrict ourselves to a part of S1, viz., S

+

1
:= {(x, y) ∈ S1 : y ≥ 0} (or S−

1

defined analogously). In particular, we cannot exhibit S1 as a graph of a single function.
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However, note that, we can write S1 as a union of these two sets S±
1

which by themselves
are graphs. But if we insist that the domains of these functions ϕ be open intervals, we then
need to write S1 as a union of four overlapping pieces. (Exercise: Do this. Look at Figures 2
and 3.)
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Figure 2: The thick arcs are the graphs of x 7→ ±
√
1− x2

-1 -0.5 0.5 1

-1

-0.5

0.5

1

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Figure 3: The thick arcs are the graphs of y 7→ ±
√

1− y2

As the third example, let us consider f : R2 → R given by f(x, y) = xy and the level
set S0 of f . We ask you to convince yourself that it is not possible to exhibit S0 in any

neighbourhood around the origin as the graph of a function defined on an interval around
0 ∈ R.

x2 + y2 = r2

Figure 4: Can the thick line segments be a graph?

The implicit function theorem tells us under certain conditions, we can exhibit level sets
as graphs “locally”. What does this word “locally” mean? It means that given a point (x0, y0)
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in the level set, there exists an open ball centred at (x0, y0) in R
2 such that portion of the

level set in this ball will be the graph of a suitably defined function. Loosely speaking, for
all points near to (x0, y0) we can express one of the coordinates as a function of the other
coordinate so that the level set around this point is “one dimensional”.

With these basic ideas, we can state the precise version of the theorem.

Theorem 1 (Implicit Function Theorem). Let U ⊂ R
2 be open and f : U → R have contin-

uous partial derivatives, fx and fy on U . Assume that (x0, y0) ∈ U is such that f(x0, y0) = 0
and that fy(x0, y0) 6= 0. Then there exist an ε > 0 and a function g : (x0−ε, x0+ε) → R such
that the following hold: (1) f(x, g(x)) = 0 for all x ∈ (x0−ε, x0+ε) and (2) g is differentiable
on its domain with

g′(x) =
−fx(x, g(x))
fy(x, g(x))

.

The proof depends decisively on the mean value theorem which we recall in the form which
we need.

Theorem 2 (Mean Value Theorem). Let f : U ⊂ R
2 → R be differentiable. Let us assume

that p = (a, b) and z = (x, y) be points of U such that the line segment joining them lies
completely in U . Then there exists a point (x1, y1) on this line segment such that

f(z)− f(p) = fx(x1, y1)(x− a) + fy(x1, y1)(y − b).

Proof. Consider the one variable function g(t) := f(p+ t(z − p)) for t ∈ [0, 1]. Apply the one
variable mean value theorem and the chain rule to get the result.

We also need the following fact.

Theorem 3. Let K ⊂ R
2 be closed and bounded and f : K → R be continuous. Then

(1) f is bounded, i.e., there exists a constant A > 0 such that |f(x)| ≤ A for all x ∈ K.
(2) If we further assume that f(x) > 0 for all x ∈ K, then there exists B > 0 such that
f(x) ≥ B for all x ∈ K.

Proof. We use the Bolzano-Weierstrass theorem: Any bounded sequence in R
2 has a convergent

subsequence. (See the exercise below for a hint.)

If f is not bounded, then there exists a sequence of points zn ∈ K such that f(zn) > n for
n ∈ N. Let (znk

) be a convergent sequence converging to z ∈ R
2. Since K is closed, z ∈ K.

By continuity of f , we have f(znk
) → f(z). For ε = 1, by continuity of f , there exists a δ > 0

such that if w ∈ B(z, δ), then |f(w)− f(z)| < 1. This implies that |f(znk
)| < |f(z)|+1 for all

k sufficiently large. This contradiction proves that there exists N ∈ N such that |f(z)| ≤ N
for all z ∈ K.

To prove 2), assume that there exists no n ∈ N such that f(z) ≥ 1/n for all z ∈ K. Then
there exists a sequence (zn) in K such that f(zn) < 1/n for n ∈ N. Arguing as in the first
part, we see that f(z) = 0 for some z ∈ K.

Ex. Assume the Bolzano-Weierstrass theorem in R. If (zn) is a bounded sequence in R
2,

where zn := (xn, yn), then (xn) and (yn) are bounded sequences in R. Let (xnk
) be convergent
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to x in R. Apply Bolzano-Weierstrass theorem in R to the bounded sequence (ynk
). It has a

convergent sequence, say, (ynkr
) converging to y. Then (znkr

) is convergent to z = (x, y).

In case you know the concept of compact sets in topology or metric spaces, we prove a
more general statement which includes the above as a special case. (You still need Heine-Borel
theorem which asserts that a set in R

2 is compact iff it is closed and bounded.)

Ex. 4. Let a, b, c, d ∈ R be such that b−a = d− c. Let S := [a, b]× [c, d] be the square in R
2.

The vertices of S are (a, c), (b, c), (b, d) and (a, d). We call the point (a, c) as the bottom left
vertex of S. The pair of midpoints of its opposite sides are given by ([a+ b]/2, c), ([a+ b]/2, d)
and (a, [c+d]/2), (b, [c+d]/2]). By joining the midpoints of opposite sides, we get four smaller
squares. Observe that if (a1, c1) is the bottom left vertex of any of these squares, we have
a ≤ a1 and c ≤ c1.

Theorem 5. A subset of R2 is compact iff it is closed and bounded.

Proof. Let K be a closed and bounded set in R
2. Then there exists R > 0 such that K ⊂

S := [−R,R]× [−R,R]. Since a closed subset of a compact set is compact, it suffices to show
that S is compact.

Suppose that S is not compact. Then there is an open cover {Ui : i ∈ I} of which there
is no finite subcover of S. Let us divide the square S into four smaller squares by joining the
pairs of midpoints of opposite sides. (See Exercise 4 above.) One of these square will not
have a finite subcover from the given cover. For, otherwise, all these four squares will have
finite subcovers so that S itself will admit a finite subcover. Choose one such smaller square
and call it S1. Note that the length of its sides is R and that if (a1, b1) is the bottom left
vertex of S1, then a1 ≥ a0 = −R and c1 ≥ c0 = −R. We repeat the argument by subdividing
S1 into four squares and choosing one of the smaller squares which does not admit a finite
subcover of {Ui}. Call this smaller square as S2. Note that the length of its sides is R/2 and
that if (a2, c2) is the bottom left vertex of S2, then a1 ≤ a2 and c1 ≤ c2.

Proceeding recursively, we have a sequence of squares Sn such that Sn dose not admit a
finite subcover and the length of sides of Sn is 2−n+1R and its bottom left vertex (an, cn) is
such that an−1 ≤ an and cn−1 ≤ cn. Thus we have two sequences of real numbers (an) and
(cn). They are bounded and monotone. Hence there exist real numbers a and c such that
an → a and bn → b. It follows that (an, cn) → (a, c) ∈ R

2. Since S is closed, we infer that
(a, b) ∈ S. Hence there is Ui0 in the open cover such that (a, c) ∈ Ui0 . Since Ui0 is open there
exists an r > 0 such that B((a, c), r) ⊂ Ui0 .

Choose n ∈ N so that (1) diamSn = 2−n+1
√
2R < r/2 and (2) d((a, c), (an, cn)) < r/2.

We then have, for any (x, y) ∈ Sn,

d((a, c), (x, y)) ≤ d((a, c), (an, cn)) + d((an, cn), (x, y)) < r/2 + 2−n+1
√
2R < r.

Thus Sn ⊂ B((a, c), r) ⊂ Ui0 . But then {Ui0} is a finite subcover for Sn, contradicting our
choice of Sk’s. Therefore, or assumption that S is not compact is not tenable.

Theorem 6 (Heine-Borel). A subset of Rn is compact iff it is closed and bounded.

Proof. One can adapt the proof of Thm. 5 to prove the theorem including the case when
n = 1. We leave the details to the reader.
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Theorem 7. Let f : X → R be a continuous function from a compact (metric) space to R.
Then
(1) f is bounded, i.e., there exists a constant A > 0 such that |f(x)| ≤ A for all x ∈ X.
(2) If we further assume that f(x) > 0 for all x ∈ X, then there exists B > 0 such that
f(x) ≥ B for all x ∈ X.

Proof. To prove (1), consider the open sets Un := {x ∈ X : |f(x)| < n} for n ∈ N. Then
Un ⊂ Un+1 and X = ∪Un.

To prove (2), consider Vn := {x ∈ X : f(x) > 1/n}.
We now start with the proof of the main theorem. We may assume, without loss of

generality, that fy(x0, y0) > 0. By continuity of fy in U , there exists a δ > 0 such that
fy(x, y) > 0 in the closed square Q := [x0−δ, x0+δ]×[y0−δ, y0+δ]. Either by Theorem 3 or by
Theorem 7, there exist positive constants A and B such that |fx(x, y)| ≤ A and fy(x, y) ≥ B
for all (x, y) ∈ Q. We want to choose an ε > 0 such that f is negative (respectively positive)
on the bottom (resp. top) side of the rectangle R := [x0 − ε, x0 + ε]× [y0 − δ, y0 + δ].

Using the mean value theorem, we get the following:

f(x, y0 − δ)− f(x0, y0) = fx(x1, y1)(x− x0) + fy(x1, y1)(−δ)
≤ Aε−Bδ

which is negative, provided that ε < min{δ, (Bδ)/A}. Similarly, we see that f(x, y0 + δ) > 0
provided that ε < min{δ, (Bδ)/A}.

Fix any x ∈ [x0 − ε, x0 + ε]. Now if we consider the function of one variable y → f(x, y)
on the interval [y0− δ, y0+ δ], the function assumes values of opposite signs at the end points
of the interval. Hence there exists at least one y in this interval such that f(x, y) = 0. But
the derivative of this function of y is fy(x, y) > 0 and hence is strictly increasing function
of y in this interval. Hence there exists a unique y ∈ [y0 − δ, y0 + δ] such that f(x, y) = 0.
Thus for a given x ∈ [x0 − ε, x0 + ε], there exists a unique y ∈ [y0 − δ, y0 + δ] such that
f(x, y) = 0. We call the y that corresponds to the given x as g(x). Thus we get a function
g : [x0 − ε, x0 + ε] → R such that f(x, g(x)) = 0.

We now show that g is continuous. Let x1, x2 be in the domain of g. Let yj = g(xj) for
j = 1, 2. Then, for some point (x3, y3) lying on the line segment joining (xj , yj), j = 1, 2, we
have

0 = f(x1, y1)− f(x2, y2) = fx(x3, y3)(x1 − x2) + fy(x3, y3)(y1 − y2),

so that

g(x1)− g(x2) = −fx(x3, y3)
fy(x3, y3)

(x1 − x2). (1)

Notice that the right side makes sense since (x3, y3) ∈ R and over there fy 6= 0. From Eq. 1,
it follows that

|g(x1)− g(x2)| ≤
A

B
|x1 − x2|.

This establishes the (Lipschitz and hence the uniform) continuity of g.
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We now use Eq. 1 to show that g is differentiable at any point x1 ∈ (x0 − ε, x0 + ε):

lim
x2→x1

g(x1)− g(x2)

x1 − x2
= − lim

x2→x1

fx(x3, y3)

fy(x3, y3)

= −fx(x1, g(x1))
fy(x1, g(x1))

by the continuity of the partial derivatives and that of g.

Remark 8. The above argument can be modified to prove the implicit function theorem for
real valued functions of n-variables where n ≥ 2. We leave the formulation and its proof to
the interested readers.

We now wish to bring out the geometric meaning of the condition that fy(x0, y0) 6= 0.
First of all note that if fx(x0, y0) 6= 0, we could have proceeded as above and exhibited x as
a function of y. Thus, the correct condition is that (fx(x0, y0), fy(x0, y0)) 6= (0, 0). That is,
the gradient ∇f(x0, y0) of f at (x0, y0) is nonzero. So, the question is: what is the geometric
meaning of ∇f(x, y)?

We again look at some examples to develop our geometric intuition. Consider a nonzero
linear function f(x, y) = ax+ by, for (x, y) ∈ R

2. The level sets are lines parallel to the line
ax+ by = 0 and the gradient of f at any point can be thought of as the normal to the line at
the point.

As a second example, consider g(x, y) := x2 + y2. Then the level sets Sc for c > 0 are
concentric circles with origin as the centre and radius

√
c. The gradient of g at (x, y) is 2(x, y)

which is normal to the level set S√
x2+y2

at the point (x, y). The reader may like to look at

another example such as h(x, y) = xy or more generally h(x, y) = ax2+2hxy+ by2. Using his
knowledge of two dimensional coordinate geometry, he can convince himself that the gradient
∇h(x, y) of h at (x, y) ∈ Sc is normal to the “conic” Sc at the point (x, y).

Therefore, the geometric meaning of the gradient condition of the implicit function the-
orem is that the level set S0 has a nonzero normal at (x0, y0). Put in a different way, the
condition assures that the “one dimensional object” or the “curve ” S0 has a well-defined tan-
gent line at (x0, y0). To understand this we invite the reader to examine the third example
(in the beginning) more closely. At the origin the gradient is zero and the “curve” has no
tangent line. But, however, observe that away from the origin, we can express exactly one of
the coordinate as the constant function of the other and that near those points the curve has
a normal and hence a tangent line. (Verify these claims.)

One last remark. If we go through the proof of the implicit function theorem, we realize
what we have achieved: Under the stated conditions, there exists a neighbourhood V of
(x0, y0) in U such that we have a continuous bijection ψ : (x0 − ε, x0 + ε) → V ∩ S0. The
inverse ψ−1, being the projection onto the first coordinate, is obviously continuous and hence
ψ is a homeomorphism of the interval onto the portion of S0 inside V . This is the reason why
we kept saying that the implicit function theorem exhibits level sets of f , (satisfying certain
conditions), as one dimensional objects. Equivalently, if you think of S0 as a “curve” defined
implicitly, then the implicit function theorem gives a local parametrization of S0 around
(x0, y0), viz., x 7→ (x, g(x)) for x ∈ (x0 − ε, x0 + ε).
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Going through this article a couple of times and trying your level best to have an intuitive
feel could be a stepping stone to modern differential geometry.

Optional: Lagrange Multiplier Method

Theorem 9 (Lagrange Multiplier). Let f : U ⊂ R
n → R and g : U ⊂ R

n → R be C1. Let
p ∈ U , g(p) = α and S := g−1(α), the level set of g at α. Assume that ∇g(p) 6= 0. If
the restriction of f to S has a local extremum at p, then there is a real number λ such that
∇f(p) = λ∇g(p).

Proof. Assume without loss of generality that ∂g
∂xn

(p) 6= 0. By the implicit function theorem,
there exists an h such that

g(x′, h(x′)) := g(x1, . . . , xn−1, h(x1, . . . , xn−1)) = 0 for all x′ ⊂ U ′ ⊂ R
n−1.

Let ϕ(x) := f(x′, h(x′)). If ϕ has an extremum at p, then

0 =
∂ϕ

∂xi
(p) =

(

∂f

∂xi
+

∂f

∂xn

∂h

∂xi

)

(p) 1 ≤ i ≤ n− 1. (2)

But g(x′, h(x′)) = 0 implies that

∂g

∂xi
+

∂g

∂xn

∂h

∂xi
, 1 ≤ i ≤ n− 1. (3)

It follows from Eq. 2 and Eq. 3 that

∂f

∂xi
=

∂f
∂xn

∂g
∂xn

∂g

∂xi
at p.

Hence if we take λ :=
∂f
∂xn
∂g
∂xn

(p), the result follows.

To explain the geometry behind the Lagrange multiplier technique, we shall look at a
simple example. We want to find the extrema of the function

f(x, y) = xy subject to the constraint (x2/9) + (y2/4) = 1.

The level curves f(x, y) = constant are rectangular hyperbolas (inclusive of degenerate case).
To apply the theorem, we take g(x, y) = (x2/9) + (y2/4) − 1. The gradients of f and g
are given by ∇f(x, y) = (y, x) and ∇g(x, y) = (2x/9, y/2). By Lagrange’s theorem, we are
looking for a scalar λ such that ∇f(x, y) = λ∇g(x, y). Eliminating λ, we see that the points
on the ellipse at which these gradients are proportional are (± 3√

2
,±

√
2).

As you can see in Figure 5 these points on the ellipse are the points where the ellipse
and the level curves (namely, the hyperbolas) have common tangent. (The gradient f is a
multiple of that of g is same as saying that the normal of the ellipse at that point is a multiple
of the normal of the level curve, hyperbola.) Also, observe that we have plotted the gradients
at these points. The thicker arrows are the gradients of g (that is, the normals to the ellipse)
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Figure 5: An Illustration of Lagrange’s Method

and the thinner ones are that of f (that is, normals to the hyperbola). The direction of the
thinner arrows tell us whether the point is a constrained maximum or a minimum. Can you
guess why?

As a second illustration, let us find the maximum and minimum values of the function
f(x, y) = 2x+ 3y subject to the constraint g(x, y) = x2 + y2 − 1. See Figure 6.
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Figure 6: 2nd Illustration of Lagrange’s Method
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