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Theorem 1 (Inverse Mapping Theorem). Let f : U ⊂ E→ E be C1. Assume that x0 ∈ U is
such that Df(x0) is invertible. Then there is an open subset V of U containing the point x0
with the following properties:

i) on V the map is one-one
ii) the image f(V ) is open neighborhood of f(x0)
iii) f−1 is C1 on f(V ) with Df−1(y) = Df(f−1(y))−1 for all y ∈ V .

Before proving this, we recall the mean value inequality in the following form:

Theorem 2 (Mean Value Inequality-2). Let f : U ⊂ E→ F be differentiable on the open set
U . Let x, y ∈ U such that [x, y] ⊂ U . Let T ∈ BL(E,F). Then we have

‖f(y)− f(x)− T (y − x)‖ ≤ ‖y − x‖ sup
0<t<1

‖Df(x+ t(y − x))− T ‖ . (1)

Proof. Consider ϕ(x) = f(x)− Tx and apply the standard mean value inequality to ϕ.

Proof. (of IMT) We may assume that Df(x0) = IE, the identity map of E. (Justify.)

Since Df is continuous at x0 there exists a δ > 0 such that

‖Df(x)−Df(x0)‖ < 1/2, for all x ∈ B(x0, δ). (2)

For x1, x2 ∈ B(x0, δ) we have by the mean value inequality

‖f(x1)− f(x2)−Df(x0)(x1 − x2)‖ ≤ ‖x1 − x2‖ sup
0<t<1

‖Df(x1 + t(x2 − x1))−Df(x0)‖ .

(3)
Now x1 + t(x2 − x1) − x0 = (1 − t)(x1 − x0) + t(x2 − x0) so that ‖x1 + t(x2 − x1)− x0‖ ≤
(1− t) ‖x1 − x0‖+ t ‖x2 − x0‖ < δ. Hence, in view of Eq. 2, Eq. 3 becomes

‖f(x1)− f(x2)− (x1 − x2)‖ ≤
1

2
‖x1 − x2‖ . (4)

This implies f is 1-1 on B(x0, δ).

To show that there exists a ball B(y0, δ
′) contained in the image of B(x0, δ), we modify

the Newton’s method. Newton’s method can be briefly described as follows: if x0 is an
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approximate zero of f(x) = 0 and if f has a non vanishing derivative around this point x0
then with xn+1 := xn − f(xn)

Df(xn)
, defined recursively we have xn tending to a limit x which is

a zero of f . Draw some pictures to see the geometric idea behind this algorithm. We modify
this algorithm below.

Suppose y ∈ B(y0, δ
′) for some δ′ > 0. We want to solve for the equation f(x) = y with

x ∈ B(x0, δ). We define recursively xk = xk−1 + y − f(xk−1). We need to check whether
xk ∈ B(x0, δ). We have

xk − xk−1 = xk−1 − xk−2 − (f(xk−1)− f(xk−2)).

Taking norm on both sides, using Eq. 4 and induction we get

‖xk − xk−1‖ ≤ (1/2) ‖xk−1 − xk−2‖ ≤ · · · ≤
1

2k−1
‖x1 − x0‖ ≤ 21−kδ′.

Hence if we choose δ′ = (δ/2), then we have ‖xk − xk−1‖ ≤ 2−kδ. In particular, ‖x0 − xk ‖ ≤∑k
i=0 δ2

−i < δ. This also shows that xk is Cauchy. Let limxk = x. Clearly we have
f(x) = y. For, from the recursive definition of xk by taking the limit as k → ∞ we get
x = limxk = limk(xk−1 + y − f(xk−1)) = x+ y − f(x).

For y ∈ B(y0, δ/2) we define g(y) := x where x ∈ B(x0, δ). We want to prove that g
is differentiable on B(y0, δ/2) and that Dg(y) = Df(x)−1. To see this, we let g(y) = x,
g(y + k) = x+ h so that f(x+ h) = y + k. Then we have

k = f(x+ h)− f(x) = Df(x)h+ ψ. (5)

where limh→0
ψ
‖h‖ = 0. From Eq. 4 it follows that

‖k − h‖ = ‖f(x+ h)− f(x)− h‖ ≤ (1/2) ‖h‖ ,

so that (1/2) ‖h‖ ≤ ‖k‖ ≤ (3/2) ‖h‖. In view of Eq. 5 we have h − Df(x)−1ψ. But

limk→0
Df(x)−1ψ
‖k‖ = 0 since 2 ‖h‖ ≥ ‖k‖ ≥ 2/3 ‖h‖ and

∥∥Df(x)−1
∥∥ ≤ 2. Then
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Df(x)−1ψ

‖h‖
≤ Df(x)−1ψ

‖k‖
≤ 2

Df(x)−1ψ

‖h‖
This proves the result.

We shall explain the geometric meaning of IMT in the finite dimensional case.

Let f : Rn+1 → R be C1. Assume that 0 lies in the image of f , without loss of generality.
In general, the set S := f−1(0) does not have any nice geometric property. However, if we
assume that

f ′(p) := grad f(p) 6= 0for all p ∈ S
then S “looks locally like a hyperplane”. Of course this needs explanation! Given p ∈ S,
since f ′(p) 6= 0, we assume without loss of generality that ∂f

∂xn+1
6= 0. Then consider the

map Φ: Rn+1 → Rn+1 given by (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn, f(x)). Then Φ′(p) has the
Jacobian 

1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xn+1

 .
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The determinant of this matrix is ± ∂f
∂xn+1

6= 0 and hence Φ′(p) is invertible. Thus Φ is a “C1-

diffeomorphism” of an open neighborhood of V of p in Rn+1 onto an open set Φ(V ) ⊂ Rn+1,
by IMT. (By a C1-diffeomorphism we mean a map F which is C1, one-one on its domain U
and F (U) is open and F−1 is also C1 on F (U).) Now we introduce a new set of coordinates
on V by setting yi(r) := ui ◦Φ(r), where ui are the ‘usual’ coordinates on Rn+1: ui(x) := xi.
In plain language this is:

yi(r) =

{
ri if 1 ≤ i ≤ n
f(r) if i = n+ 1.

With respect to this new set of coordinates yi, S has a local description around p on V ∩ S:
it is the “hyperplane” {yn+1 = 0}. Thus by taking a suitable system of coordinates we
“straighten” the hypersurface to a hyperplane locally.

To see how this change of coordinates can help us we pose the following question: Suppose
the hypersurface S is also described around p as g−1(0). That is, there exists an open set
U 3 p such that S ∩ U = g−1(0), with g : U → R being a C1-function. Is g divisible by f at
least locally around p? That is, does there exist another function h defined in an open set
containing p on which we can write g = fh?

Let F := f ◦Φ−1 and G := g ◦Φ−1. Then it follows that Φ(V ∩ S) = {yn+1 = 0} ∩Φ(V ).
The above question then reduces to an equivalent one: Is G divisible by F = yn+1 locally
around 0? This is certainly easy to answer (in the affirmative, by Taylor expansion).

The moral therefore is that the IMT allows us to use a coordinate system that
is most convenient or that simplifies the geometric problem on hand.

Before closing this section we shall state the implicit function theorem and leave its proof
to the reader. First recall that if f : U ⊂ E× F→ G is differentiable at (x, y) then we have

f ′(x, y)(u, v) = Dxf(x, y)(u, 0) +Dyf(x, y)(0, v)

where Dxf(x, y) is the partial derivative of f in the first variable etc.

Theorem 3. Assume that f : U ⊂ E× F→ G is such that
i) f(x0, yo) = 0 for some (x0, y0) ∈ U
ii) Dyf exists on U and Df(x0, y0) : F→ G is continuous and bijective
iii) f and Dyf are continuous at (x0, y0).

Then there exist ρ and r such that for all x ∈ B(x0, ρ) there is a unique y(x) ∈ F for
which ‖y(x)− yo‖ ≤ r and f(x, y(x)) = 0. Furthermore, if f is C1 for 0 ≤ k ≤ ∞ around
(x0, y0), then so is x 7→ y(x) around x0.
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