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We enunciate three principles which essentially state properties enjoyed by the set N of
positive integers. Our aim in this article is to show that N has one of these properties if and
only if it enjoys the other two.

The Induction Principle. Let A ⊂ N. Assume that (i) 1 ∈ A and that (ii) n ∈ A implies
that n + 1 ∈ A. Then A = N.

The Strong Induction Principle. Let B ⊂ N. Assume that 1 ∈ B and that if 1, 2, . . . , n ∈
B implies that n + 1 ∈ B. Then B = N.

The Well-Ordering Principle. Let C ⊂ N be nonempty. Then C has a least element.

Theorem 1. The above three principles are equivalent.

Proof. Do you understand what exactly the theorem means? If one of the principle holds
true for N, then the other two are also true.

(1) =⇒ (2): Let B satisfy the hypothesis of the strong induction principle. We wish to
show that B = N. We want to use the induction principle. So, we need to devise a set to
which the induction principle can be applied. With this in mind, let us define A := {n ∈ N :
{1, 2, . . . , n} ⊂ B}.

Now, 1 ∈ A, since by hypothesis on B, 1 ∈ B. By the definition of A, it therefore follows
that 1 ∈ A. Now let n ∈ A. This means that 1, 2, . . . , n ∈ B, by the very definition of A.
But by the hypothesis on B, it follows that n + 1 ∈ B. Thus {1, 2, . . . , n + 1} ⊂ B. By the
definition of B, we deduce that n+ 1 ∈ A. Thus, A ⊂ N is such that 1 ∈ A and n ∈ A implies
that n+ 1 ∈ A. By the induction principle, we have A = N. In particular, for each n ∈ N, we
have n ∈ A, But then it follows from the definition of A that 1, 2, . . . , n ∈ B, in particular,
n ∈ B. Thus for each n ∈ B, we have shown that n ∈ B. Thus, N ⊂ B and hence B = N.
That is, we have proved if the induction principle is true for N then the strong induction
principle holds true for N.

(2) =⇒ (3): Let the strong induction principle is true for N. Let C ⊂ N be any nonempty
set. We need to show that C has a least element. We prove this by contradiction. More
precisely, we wish to show that if C ⊂ N has no least element, then C must be ∅. If it is
true, then if we define A := N \ C must be all of N. One way of showing that this what
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happens is to show that A is eligible for an application of the strong induction principle. So,
let A := N \ C.

Now, 1 ∈ A. If it were false, then 1 ∈ C. But then, clearly, C has a least element! So,
we infer that 1 /∈ C and so, 1 ∈ A. Let 1, 2, . . . , n ∈ A. This means that none of them lie
in C. We claim that n + 1 /∈ C. If n + 1 ∈ C, since k /∈ C for all k = 1, 2, . . . , n, it would
mean that n + 1 must be a least element of C. This contradicts our assumption that C has
no least element. We therefore conclude that n+ 1 /∈ C. Hence, n+ 1 ∈ A. What we have so
far achieved is that A has the properties required by the strong induction principle. Hence,
we deduce that A = N and therefore C = ∅.

(3) =⇒ (1): Let us assume that the well-ordering principle holds for N. Let A ⊂ N be such
that 1 ∈ A, and such that whenever n ∈ A, we have n+ 1 ∈ A. We wish to show that A = N.
Suppose this is false. Then the set C := N \ A is nonempty. By the well-ordering principle,
C has a least element, say, L. This integer L cannot be 1. For, if it were, 1 ∈ C and hence
1 /∈ A, contradicting our assumption on A. Therefore L ≥ 2. As a consequence, L − 1 is a
positive integer in N. Since L is the (?) least element of C, we deduce that k /∈ C for all
k = 1, 2, . . . , L− 1. In particular, they all belong to A. But then by the property of A, since
L − 1 ∈ A, we see that L ∈ A. This is a contradiction since A ∩ C = ∅. This contradiction
forces us to conclude that C must be empty, that is, A = N, as desired.

Remark 2. The condition (i) of the Induction Principle is called the basis for induction
awhile (ii) is called the inductive step.

Both these conditions are important can seen from Ex. 10 and Ex. 11.

We illustrate the principle by means of a few examples.

Example 3. For any positive integer n, we have

1 + 2 + · · ·+ n =
n(n + 1)

2
. (1)

Let P (n) be the statement Eq. 1. We first observe that P (1) is true. Let us now assume
that P (k) is true. Thus we have 1 + · · ·+ n = n(n + 1)/2. We now add n + 1 to both sides.
We then get

1 + · · ·+ n + (n + 1) =
n(n + 1)

2
+ (n + 1).

The right side of this equation is

n(n + 1) + 2(n + 1)

2
=

(n + 1)(n + 2)

2
,

which is P (k + 1). Hence P (k + 1) is true. Thus, by principle of induction, we see that Eq. 1
is true for all n ∈ N.

Ex. 4. For any positive integer n we have

12 + 22 + · · ·+ n2 =
n(n + 1)(2n + 1)

6
.

Ex. 5.
∑n

k=1 k
3 = n2(n+1)2

4 , for all n ∈ N.
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Example 6 (Bernoulli’s Inequality). Let x ∈ R such that x > −1. Then

(1 + x)n ≥ 1 + nx, x > −1 and n ∈ N. (2)

Let P (n) be the statement Eq. 2.

If k = 1, P (1) is clearly true. Assume that P (k) is true. That is, we have (1+x)k ≥ 1+kx.
Since 1 + x > 0 we multiply both sides of the inequality by 1 + x and get

(1 + x)k+1 = (1 + x)(1 + x)k ≥ (1 + x)(1 + kx)

≥ 1 + (k + 1) + kx2

≥ 1 + (k + 1)x.

This shows that P (k + 1) holds. Hence, by the principle of induction, Eq. 2 holds true for all
n ∈ N.

Example 7. If a1, a2, . . . , an are positive integers relatively prime to another integer b, then
their product a1 · · · an is relatively prime to b.

Recall that we say two integers r and s are said to be relatively prime if the only positive
integral divisor of both is 1. Equivalently, r and s are relatively prime iff there exist integers
a and b such that ar + bs = 1.

What is P (n) here? We let P (n) be the statement that if we are given n integers whcih
are relatively primt to b, so is their product.

P (1) is certainly true by hypothesis. We now prove that P (2) is also true. Let a1 and a2
be relatively prime to b. Then there exist integers xj , yj , j = 1, 2 such that a1x1 + by1 = 1
and a2x2 + by2 = 1. Multiplying these equations, we get

a1a2(x1x2) + b(a1x1y2 + a2x2y1) = 1.

This proves that a1a2 is relatively prime to b.

Assume that P (k) is true. Let a1, . . . , ak, ak+1 be relatively prime to b. Since P (k) is true,
a1 · · · ak is relatively prime to b. Also, by assumption, ak+1 is relatively prime to b. By P (2),
the 0product (a1 · · · ak)ak+1 is relatively prime to b. That is, P (k + 1) holds. By induction
principle, P (n) holds true for all n ∈ N.

Remark 8. The crucial step in the above proof is to show that P (2) holds. To appreciate
this, do the next exercise.

Ex. 9. Find the fallacious step in the following argument. We prove by induction that any
n things are the same. If n = 1 this is clear. Assume that any k things are the same. Let
x1, x2, . . . , xk, xk+1 be given. By induction hypothesis (that is another way of saying P (k)
is true) applied the the k things a1, . . . , ak we find that a1 = a2 = · · · = ak. Similarly, we
conclude that a2 = a3 = · · · = ak = ak+1. Hence a1 = a2 = · · · = ak = ak+1. Hence by
induction principle, given any n things, they are always the same.

Ex. 10. Show that the statement 2 + 2 + · · ·+ 2n = (n+ 2)(n− 1) for all n ∈ N satisfies the
inductive step but has no basis.
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Ex. 11. Show that for some values of n, n2 + n + 41 is a prime number for some it is not,
so that there is no inductive step which would show that n2 + n + 41 is a prime number for
all n.

Ex. 12. Derive the formula for the sum of first n terms of an arithmetic progression:

a + (a + d) + (a + 2d) + · · ·+ (a + (n− 1)d) =
n[2a + (n− 1)d]

2
.

Ex. 13. Derive the formula for the sum of first n terms of a geometric progression:

a + (ar) + (ar2) + · · ·+ (arn−1) =
a(rn−1)

r − 1
, r 6= 1.

We now give a set of exercises for practice. In all these problems the statement is to be
proved for all positive integers by induction.

Ex. 14. If a ≡ b|m|, then
an ≡ bn|m|.

Ex. 15. 4n ≡ 3n + 1|9|.

Ex. 16. Fibonacci numbers. We define a sequence of numbers as follows: f1 = 1, f2 = 1
and fn = fn−2 + fn−1 for all n ≥ 3. The number fn is called the nth Fibonacci number.

Prove that, for each n ∈ N, the following hold:

f2 + f4 + · · ·+ f2n = f2n+1 − 1.

f1 + f3 + · · ·+ f2n−1 = f2n.

f1 + f2 + · · ·+ fn = fn+2 − 1

fn < 2n.

Ex. 17. If A is the matrix

(
1 1
1 0

)
, then An =

(
fn+1 fn
fn fn−1

)
, for all n ∈ N.
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