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The aim of this article is to bring to the attention of undergraduate students of mathemat-
ics the striking similarity between the set of integers and the set of polynomials, say, over Q, R
or C. As the student learns higher mathematics, especially modern algebra (theory of rings),
he will come to know about this in a better perspective. However, it is my opinion that an
attempt of this kind will show the students how mathematicians develop a theory by looking
at patterns and examples. Also, proceeding along similar lines with a lot many examples and
exercises, this can be given as a one-semester course on very concrete mathematics. Another
aim of this article is to gently introduce the young students to one of the most powerful and
exciting aspects of modern number theory which exploits this similarity between the study
of numbers and that of rational functions (function fields) by employing algebraic geometric
techniques.

To explain my ideas, I am going to assume some basic facts on integers and proceed to
establish the above mentioned similarity.

In the rest of this article, we shall let F denote any one of the fields Q, R or C. Most
of what I say below will be true for any field, if the reader understands what a field is. By
a polynomial over the field F with the indeterminate X, we mean an expression of the form
a0 + a1X + a2X

2 + · · · + anX
n where ak ∈ F for 0 ≤ k ≤ n and n ∈ N. The element ak is

called the coefficient of Xk. We shall let F [X] denote the set of polynomials over F . Given
a polynomial f ∈ F [X], we can consider it as a function on F : If f(X) =

∑n
k=0 akX

k, then
the associated function is

λ 7→ f(λ) :=
n∑
k=0

akλ
k.

Two polynomials f(X) :=
∑m

k=0 akX
k and g(X) :=

∑n
r=0 brX

r are said to be equal if m = n
and ak = bk for 1 ≤ k ≤ n. It is possible that f and g may be equal as functions on F but
are not equal as polynomials. (However, see Cor. 11.)

The first fact one learns about the integers is the division algorithm.

Theorem 1 (Division Algorithm.). (a) Let a > 0 and b be two integers. Then there exist
two integers q and r such that b = qa+ r where 0 ≤ r < a.
(b) Let f and g be polynomials in F [X] with f 6= 0. Then there exist polynomials q and r
such that either r = 0 or deg r < deg f such that g = qf + r.

Moreover the objects whose existence is assured are unique.
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Proof. Let S := {b − ax : x ∈ Z & b − ax ≥ 0}. If b ≥ 0, we may take x = 0 and hence
b = ax ≥ 0 ∈ S. If b < 0, then we take x = −b so that b − ab = b(1 − b) > 0 and lies in
S. In any case, we conclude that S 6= ∅. By well-ordering, S has a least element, say, r. By
definition, r is of the form r = b− aq for some q ∈ Z. Note that r ≥ 0. We claim that r < a.
If not, then , r − a ≥ 0 so that

r − a = b− aq − a = b− a(q + 1) ≥ 0,

and hence r − a ∈ S, a contradiction. This proves a).

To prove b), we fix f 6= 0. We prove that for any g ∈ F [X], there exist q and r as stated
in b), using induction on the degree of g. If deg g < deg f , then we may take q = 0 and r = g.
So we may assume that deg g ≥ deg f . Let g(X) = bnX

n + · · ·+ b0, f(X) = amX
m + · · ·+ a0

with am 6= 0 6= bn and m ≤ n. Let n = m + k. Let g1(X) := g(X) − ( bnam )Xkf(X). Then
deg g1 < deg g. By induction, we can write g1 = fq1 + r1. We then have

g = g1 +
bn
am

Xkf

= fq1 + r1 +
bn
am

Xkf

= f(q1 + (
bn
am

)Xk) + r1.

This completes the proof of b).

We shall prove the uniqueness part of (a). Let b = aq+r and b = ac+d with 0 ≤ r, d < a.
Then 0 = b− b = a(q− c)+(r−d) so that r−d = a(c−q). It follows that |r−d| = a|c−q|. If
c 6= q, then |c− q| ≥ 1 so that a|c− q| ≥ a whereas |r− d| < a, since we may assume without
loss of generality 0 ≤ r ≤ d < a. This contradictions forces us to conclude that c = q and
r = d.

Uniqueness part for b) is left to the reader.

Remark 2. The q and r of the last theorem are called the quotient and remainder of b
(respectively g) when divided by a (resp. f).

The quotient and the remainder are usually found by the so-called long division method
of high school algebra.

The next result tells us about the Indian way of writing integers to the base 10 and much
more.

Theorem 3 (Expansion w.r.t. a base). (a) Fix a natural number b ≥ 2 in N. We can
represent any natural number a uniquely as

a = rnb
n + rn−1b

n−1 + · · ·+ r1b+ r0,

where 0 ≤ ri < b for all i.
(b) Let p be fixed in F [X]. Assume that deg p ≥ 1.Then we can write any f ∈ F [X] uniquely
as

f = rnp
n + rn−1p

n−1 + · · ·+ r1p+ r0,

where 0 ≤ deg ri < deg p for all i.
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Proof. Let S ⊂ N be the set of integers which admit expansion as specified. Then S 6= ∅,
since any natural number a ≤ b lies in S. Let a ∈ N be such that any integer less than a lies
in S. Then, using division theorem, we can write a = bq + r, with 0 ≤ r < b. By hypothesis,
q ∈ S and hence we can write it uniquely as

q = rnb
n + · · ·+ r1b+ r0.

Then

a = bq + r

= b(rnb
n + · · ·+ r1b+ r0) + r

= sn+1b
n+1 + · · ·+ s1b+ s0,

where sj = rj−1 for 1 ≤ j ≤ n+ 1 and s0 = r.

(b) is proved using the induction on the degree.

Remark 4. Note that the division theorem gives us an algorithm to write these expansions.
Suppose that we wish to write a in base b. By successive use of division theorem, we get

a = bq + r0

q = bq1 + r1

q1 = bq2 + r2
...

qn−1 = b+ rn.

The process stops when 0 is obtained as the quotient. The desired expansion then is a =
rnb

n + · · ·+ r1b+ r0.

Fix p ∈ F [X]. We can write f ∈ F [X] in base p as follows:

f = pq0 + r0

q0 = pq1 + r1

q1 = pq2 + r2
...

qk−1 = pqk + rk,

with deg qj < deg p for all j. Then f = rkp
k + rk−1p

k−1 · · ·+ r1p+ r0, by back substitution.
By the uniqueness of the division algorithm, this representation of f in powers of p is unique.

Ex. 5. (a) Write 123 in base 2. (b) Write x5 + x3 + 1 in base x2 + 1.

We collect some standard results concerning polynomials.

Theorem 6 (Remainder Theorem). Let f(X) ∈ F [X] and a ∈ F . Then f(a) is the remainder
when f(X) is divided by (X − a).

Proof. Write f(X) = (X−a)g(X)+r(X) by the division theorem. Then degR < deg(X−a) =
1. Hence r(X) = r ∈ F . Evaluating both sides at X = a, we get f(a) = r.
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Remark 7. We can give an alternate proof of the remainder theorem as follows: Consider
f(X)− f(a). It is divisible by (X − a). For, we can write f(X)− f(a) in terms of (Xk − ak)
which are divisible by (X − a). Hence f(X) = g(X)(X − a) + f(a). By the uniqueness part
of the remainder theorem, the result follows.

Definition 8. An element λ ∈ F is said to a zero or a root of f ∈ F [X] if f(λ) = 0.

Corollary 9 (Root Theorem). Let the notation be as in the remainder theorem. Then a is a
zero of f iff X − a divides f(X).

Corollary 10 (D’Alembert). A nonzero polynomial of degree n in F [X] has at most n distinct
zeros in F .

Corollary 11. If F is an infinite field and if f = g as functions on F , then f = g as
polynomial.

Definition 12. Let a, b ∈ Z. An integer d ∈ N is called a a greatest common divisor of a and
b if (1) d divides both a and b and (2) any common divisor of a and b is smaller than or equal
to d.

Let f, g ∈ F [X], F a field. A polynomial p ∈ F [X] is a greatest common divisor of f and
g if (1) p divides both f and g and (2) if q ∈ F [X] divides them, then deg q ≤ deg p.

Definition 13. Given integers a and b, we let

(a, b) := {n ∈ Z : n = xa+ yb for some x, y ∈ Z}.

Similarly define, for f, g ∈ F [X],

(f, g) := {h ∈ F [X] : h = fu+ gv, for some u, v ∈ F [X]}.

Ex. 14. If m,n ∈ (a, b), then m + n,mn ∈ (a, b). In fact, ks ∈ (a, b) for any k ∈ Z and
s ∈ (a, b). Formulate and prove its analogue for the case of F [X].

Theorem 15. (a) Given a, b ∈ Z, there exists an integer d ∈ Z such that (a, b) = {nd : n ∈
Z}.
(b) Given f, g ∈ F [X], there exists d ∈ F [X] such that (f, g) := {h · d : h ∈ F [X]}.

Proof. Note that if one of a or b is zero, say, b = 0, then (a, b) = (a) = {k · a : k ∈ Z}.
Hence, we may assume that neither of them is zero. Hence there exists positive elements in
(a, b). By well-ordering principle, let d be the smallest positive integer. Let d be in (a, b). Let
d = xa+ yb. Then kd ∈ (a, b) for any k ∈ Z. Let m ∈ (a, b). Then, by division theorem, we
can write m = qd + r with 0 ≤ r < d. Since r = m − qd ∈ (a, b) and since d is the smallest
positive integer in (a, b) , we infer that r = 0. That is, m = kd. Thus (a) is proved.

(b) is proved similarly. Choose d ∈ (f, g) of least possible degree. Argue as in (a) using
the division theorem.

Ex. 16. There exists a unique greatest common divisor for a given pair of nonzero integers.
There is no such uniqueness in the case of polynomials in F [X]. For example, consider (x2−1)
and 2x3 + 4x2 + 3x = x(x + 1)(x + 3) ∈ Q[X]. Then all polynomials of the form α(X + 1)
are gcd’s of the given polynomials.
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Ex. 17. We say f ∈ F [X] is monic if the coefficient of the highest degree term in f is 1.
Show that there exists a unique monic polynomial among the gcd’s of f and g.

Ex. 18. Show that if pj , j = 1, 2 are gcd’s of f, g ∈ F [X], then pj are constant multiples of
each other.

Recall the Euclidean algorithm for a pair of natural numbers a and b. We apply division
theorem successively as follows:

b = aq1 + r1,

a = r1q2 + r2,

r1 = r2q3 + r3,

...

rn−1 = rnqn+1 + 0.

(1)

If n is such that rn divides rn−1, then rn is the gcd of a and b.

We have an analogous Euclidean algorithm in F [X]. Given f, g ∈ F [X], with f 6= 0, we
apply the division theorem of F [X] successively:

g = fq1 + r1,

f = r1q2 + r2,

r1 = r2q3 + r3,

...

rn−1 = rnqn+1 + 0.

(2)

(Since deg r1 < deg r2 · · · < deg rk−1 < deg rk, there are atmost deg f steps.) Then rn is a
gcd(f, g).

We prove both these results in

Theorem 19 (Euclidean Algorithm & Bezout’s Identity). (a) Let rN be the last nonzero
remainder in the Euclidean algorithm for a, b ∈ N. Then rN is the gcd(a, b) and we have
Bezout’s identity.

rN = ax+ by for some integers x, y ∈ Z. (3)

(b) An analogous result holds in F [X].

Proof. Under the hypothesis of the theorem, the number of steps in the algorithm is N + 1.
We prove the result by induction on N .

If N = 0, then a divides b and hence the result follows. If N = 1, let

b = aq1 + r1

a = r1q2 + 0.

It is easy to see that r1 = gcd(a, b). Also, r1 = b − aq1 = b · 1 + a(−q1). Hence Bezout’s
identity is true.
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Assume that the result is true for N = n− 1, i.e., the theorem is true for any two natural
numbers whose Euclidean algorithm takes n steps. Let a, b ∈ N be such that the algorithm
takes n + 1 steps. Using the notation as in (1) above for the steps in the algorithm, if we
ignore the first equation, the remaining n equations constitute the Euclidean algorithm for
the pair (a, r1). By induction, we conclude rn = gcd(a, r1), and rn = au + r1v for some
integers u and v. Now, b = aq1 + r1. One easily shows that gcd(b, a) = gcd(a, r1) (Exercise).
Hence we conclude that gcd(b, a) = gcd(a, r1) = rn. From r1 = b− aq1 and rn = au+ r1v, we
see that rn = bv + a(u− q1v). Hence, Bezout’s identity is true. Thus (a) is proved.

Proof of (b) is left to the reader.

Definition 20. We say that an integer n ∈ Z is a unit if there exists an integer m ∈ Z such
that mn = 1. It is easily shown that the only units in Z are ±1.

We say that a polynomialf(X) ∈ F [X] is a unit if there exists g(X) ∈ F [X] such that
f(X)g(X) = 1, the constant polynomial. It is an easy exercise to show that the only units in
F [X] are the nonzero constant polynomials.

We say that an integer p ∈ Z is a prime if p is not a unit and if p = rs, r, s ∈ Z, then
either r or s is a unit. Note that if n ∈ N is a positive integer, then n is a prime iff n > 1 and
the only positive divisors of n are n and 1.

A polynomial p(X) ∈ F [X] is said to be irreducible in F [X] if p is not a unit and if
p = fg, then either f or g is a unit.

Example 21. (a) For any field F and a ∈ F , the polynomial X − a is irreducible.
(b) The polynomial X2 + 1 ∈ R[X] is irreducible in R[X] but not in C[X].
(c) The polynomial (X3 − 2) is irreducible in Q[X] but not in R[X].

Example 22. Let f(X) = X2 + bX + c ∈ R[X] be quadratic. We claim that f is irreducible
iff f has no real roots. This follows from the root theorem. Geometrically, this happens iff the
graph of f , considered as a function on R crosses the x-axis. We may proceed algebraically
as follows:

f(X) = X2 + bX + b2/4 + (c− b2

4
)

= a[X +
b

2
]2 + (c− b2

4
).

Thus, at X = −b/2, the function f takes the minimum value y = f(−b/2) = − b2−4ac
4 . For

large values of |X|, y > 0. Hence f crosses the x-axis iff b2 − 4c > 0. (Do you understand
this?)

For a long time, mathematicians believed that any polynomial f(X) ∈ R[X] of degree ≥ 3
is not irreducible. A proof was found after the fundamental theorem of algebra was proved.

Theorem 23 (Fundamental Theorem of Algebra). Let f(X) ∈ C[X] be any nonconstant
polynomial. Then there exists a root α ∈ C.

We shall assume this result without proof.

Proposition 24. There exists no irreducible polynomials in R[X] of degree ≥ 3.
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Proof. Let f(X) ∈ R[X] be of degree > 2. By root theorem, we may assume that f(X) has
no real roots. Since f(X) ∈ C[X], by the fundamental theorem of algebra, there exists a
complex root, say λ = a+ ib. One easily shows that λ = a− ib is also a root of f(X). Then
p(X) = (X −λ)(X −λ) = X2− 2aX + (a2 + b2) ∈ R[X] and is irreducible over there. (Why?
For, its roots are not real or still better, by the “b2 − 4c” condition in the above example.)
Using the division theorem in R[X], we can write

f(X) = p(X)q(X) + r(X), (4)

with deg r ≤ 1. Let r(X) = s + tX, s, t ∈ R. Evaluate (4), at X = λ. Sine f(λ) = 0, we
deduce that r(λ) = 0, i.e., s + tλ = 0. That is, λ ∈ R, unless s = 0 = t. Thus p divides f .
Since deg p = 2 < deg f , f is not irreducible.

Proposition 25. (a) Let p ∈ N divide ab in N. Assume that gcd(p, a) = 1. Then p divides
b.
(b) Let p(X) ∈ F [X] divide ab in F [X]. Assume that gcd(p, a) are units. Then p divides b.

Proof. By Bezout’s identity, we can write 1 = pu + av. Multiplying both sides by b, we get
b = pub+ abv. Clearly, p divides RHS and hence p divides b.

Irreducible polynomials are like prime numbers, as the nest two results show.

Corollary 26. (a) Let p ∈ N be a prime. If p divides ab, then p divides one of a and b.
(b) Let p ∈ F [X] be irreducible. If p divides ab in F [X] then p divides one of a and b.

Proof. The only point here is that if p ∈ F [X] does not divide a, then gcd(p, a) are units.

Theorem 27 (Fundamental Theorem of Arithmetic and its Analogue). (a) Any natural
number n ≥ 2 is a product of primes. This decomposition is unique in the sense that if
n = p1 · · · pm = q1 · · · qs, then m = s and there is a one-to-one correspondence between {pi}
and {qj} such that pi and qj occur the same number of times in the above decomposition.

(b) Any polynomial of degree ≥ 1 in F [X], F a field, is irreducible or is a product of
irreducible polynomials in F [X]. Furthermore such a factorization is unique in the following
sense: If f = p1 · · · pm = q1 · · · qn, then m = n and there is a one-to-one correspondence
between {pi} and {qj} such that if pi corresponds to qj, then they differ by units in F [X].

Proof. If n > 1 is a prime, then it is a product of primes. If n is not a prime, say, n = ab,
then by induction, a and b are products of primes and hence so is n. Thus the existence of
factorization into prime factors is proved.

To prove uniqueness, assume that the result is true for all numbers< n. Let n = p1 · · · pr =
q1 · · · qs. If n is a prime, then n = p1 = q1 and hence the result follows. If n is not a prime,
then p1 divides n = q1 · · · qs and hence p1 divides some qj . Then, P − 1 = qj . Now, n/p1 is a
natural number less than n and has two factorizations n/p1 = p2 · · · pr = q2 · · · qs. Hence, by
induction, r = s etc.

The proof in the case of polynomials is similar.
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The next item is to prove the existence of partial fractions in Q, the set of rational numbers
and also in F(X), the set of rational functions.

Definition 28. We say an expression of the form f(X)
g(X) is a rational function on F . Even

though we call it a function, it is not considered, in general, as a function from F to F . The
set of all rational functions on F is denoted by F(X). Imitating the arithmetic operations in
Q, we can define the sum and product of two rational functions. Also, we can define a scalar
multiplication in an obvious way:

(α, r(X)) 7→ αf(X)

g(X)
if r(X) =

f(X)

g(X)
.

One can also show that if r ∈ F(X) is nonzero, it has a multiplicative inverse in the sense
that there exists s ∈ F(X) such that r(X)s(X) = 1, the constant rational function.

The following may be noted. In the case of rational numbers, given a rational number

r = p
q , then r = ap

aq for any nonzero a ∈ F . Similarly, if r = f(X)
g(X) ∈ F(X) is rational, then

r(X) = h(X)f(X)
h(X)g(X) for any nonzero polynomial h ∈ F [X].

We need a couple of lemmas.

Lemma 29. Let f, g ∈ F [X]. Assume that gcd(f, g) = d. Then d = rf+sg with deg r < deg g
and deg s < deg f .

Proof. By Bezout’s identity, we can always find r and s such that d = rf + sg. Using the
division theorem, we write r = gq1 + r1 and s = fq2 + s1. Then

d = rf + sg = (gq1 + r1)f + (fq2 + s1)g

= fg(q1 + q2) + r1f + s1g.

If q1 + q2 6= 0, then the degree of the RHS is strictly greater than that of f and g so that d
cannot be a divisor of f and g. Thus, d = r1f + s1g, and r1 and s1 are as required.

Lemma 30. Let g = ab, a and b being relatively prime in F [X]. Assume that deg f < deg g.
Then there exist unique polynomials r and s with deg r < deg a and deg s < deg b such that

f

g
=
r

a
+
s

b
.

Proof. By hypothesis, gcd(a, b) = 1 and hence there exists r and s such that ar+ bs = f with
deg r < deg b and deg s < deg a. Dividing both sides of the equation by g = ab, we get the
result.

Theorem 31. Let g = pe11 · · · p
ek
k be a factorization of g into a product of powers of relatively

prime irreducible polynomials pj in F [X]. Assume that deg f < deg g. Then there exist
unique polynomials hi, 1 ≤ i ≤ k, with deg hi < deg peii such that

f

g
=

h1
pe11

+ · · ·+ hk
pekk

.
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Proof. By induction on k. For k = 1, the result is clear. To pass from k to k − 1, we let

a = pe11 · · · p
ek−1

k−1 and b = pekk .

The result follows from the last lemma and induction.

Given f/pn, we can write f in base p:

f

pn
=
r0 + r1p+ · · ·+ rkp

k

pn
=
r0
pn

+
r1
pn−1

+ · · ·+ rk
pn−k

,

with deg ri < deg p for all i.

Putting all these facts together, we get the existence of partial fractions for rational
functions in F(X).

Theorem 32 (Partial Fractions). (a) Let f, g ∈ F [X] and deg f ≥ 1. Then we can write

f/g = h+
∑
p∈P

∑
n∈N

hp,n
pn

,

where P is the set of monic irreducible polynomials in F [X], and deg hp,n ≤ deg pn and is
zero except for finitely many p ∈ P .

(b) Any rational number r ∈ Q has a unique partial fraction decomposition:

r = m+
∑
p∈P

∑
k∈N

rp,k
pk

,

where m ∈ Z., rp,k ∈ {0, 1, . . . , p − 1} and P is the set of primes. Also rp,k = 0 except for
finitely many p ∈ P .

Example 33. We shall work out an example for each case. First let us look at the integers
where the result is not all that well-known. Let us write the partial fraction expansions for
7/20. Since 20 = 4 · 5, a product of integers which are coprime, we can write 1 = 4x+ 5y =
−4 + 5. Multiply both sides by 7 to get 7 = 7 · 5− 7 · 4. Divide both sides by 20 to get

7

20
=

7

4
− 7

5

= (1 +
3

4
)− (1 +

2

5
)

=
3

4
− 2

5

= −1 +
3

4
+

3

5
.

To decompose a rational function into partial fractions, it is better to adopt the method
learnt in calculus. Consider X3+X2+X+2

X4+3X2+2
. Note that

(X4 + 3X2 + 2) = (X2 + 1)(X2 + 2).
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We write
X3 +X2 +X + 2

X4 + 3X2 + 2
=
aX + b

X2 + 1
+
cX + d

X2 + 2
.

Then we have

X3 +X2 +X + 2 = (aX + b)(X2 + 2) + (cX + d)(X2 + 1).

Equating the coefficients of equal powers, we get a+c = 1, b+d = 1, 2a+c = 1 and 2b+d = 2.
Solving these simultaneous equations leads to the desired result.

Ex. 34. Find the partial fraction expansion of (a) 5
12 and (b) 3X+5

X3−X2−X+1
in R(X).

Ex. 35. Consider C(X), the set of rational functions on C as vector space over C. Then
{Xn : n ∈ Z+} ∪ { 1

(X−α)m : α ∈ C,m ∈ N} is a basis for this vector space. Can you find a

basis for F [X] for any field F?

A Final Remark. We draw the attention of the reader to the following fact. What made
things work in the cases of integers and polynomials is the fact that they both have a division
algorithm and an integer valued function d (modulus function in the case of integers and
degree function in the case of polynomials) which are related as follows: Given f, g with
f 6= 0, there exist q, r such that g = fq + r such that either r = 0 or d(r) < d(f). Division
algorithm and the function d allowed us to use induction in all the proofs. For more details,
the reader may consult any of the books on algebra found in the references below.

Acknowledgement. I thank my friend Professor S.D. Adhikari for a critical reading of this
article and suggestions for improving the exposition.
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