Lebesgue Integral without Measure Theory

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

This article gives a very brief account of the theory of Lebesgue integral which avoids a lengthy treatment of measure theory. The omitted proofs are either standard or easy. This article Follows closely Van Daele and Riesz-Nagy' treatise on Functional Analysis. Even when one write all the details, the article may swell up to 8 pages, in any case, it will be well within 10 pages!

One quickly reviews the following three items:

- 1. Integral $I(s)$ of step functions.
- 2. Extension of the integral I to $C[a, b]$ and the standard properties.
- 3. Integral I on $K(\mathbb{R})$, the space of continuous functions with compact support.

Definition 1. Let $f: \mathbb{R} \to \mathbb{C}$ be function. Define $||f||$, taking values in $[0, \infty]$, by setting

$$
|| f || := \inf \left\{ \sum_{n=1}^{\infty} I(g_n) : g_n \in K(\mathbb{R}), \ g_n \ge 0 \text{ and } | f(t) | \le \sum_n g_n(t), \text{ for all } t \in \mathbb{R} \right\}.
$$

The properties of this map $\| \cdot K(\mathbb{R}) \to [0, \infty]$ are given in the next porposition.

Proposition 2. Let $f_n: \mathbb{R} \to \mathbb{C}$, $n \in \mathbb{N}$, be functions and $\lambda \in \mathbb{C}$. Then

- (i) We have $|| f || = I(|f|)$ for $f \in K(\mathbb{R})$.
- (ii) $\|\lambda f\| = |\lambda| \|f\|.$
- (iii) If $|f(t)| \leq \sum_{n} f_n(t)$ for $t \in \mathbb{R}$, then $||f|| \leq \sum_{n} ||f_n||$.

Proof. Idea of the proof: Only the first one requires proof, which is an easy application of Dini's theorem (on uniform convergence).

It is clear that $|| f || \leq I(|f|)$. Let (g_n) be a sequence as in the definition of $|| f ||$. Define h_n as follows:

$$
h_0 = 0;
$$
 $h_n = \min \left(|f|, \sum_{k=1}^n g_k \right).$

The functions h_n are positive continuous functions with compact support as their supports are contained in the support of f. The sequence (h_n) increases to $|f|$. We can apply Dini's theorem to conclude that h_n converges uniformly to $|f|$. Hence $I(h_n) \to I(|f|)$ (by an elementary result in Riemann integration). If we let $\varphi_n := h_n - h_{n-1}$, then the sequence (φ_n) has the properties stated for functions g_n that appear in the definition of $|| f ||$. For all x, we have $\varphi_n(x) \leq h_n(x)$ and therefore $\sum_n I(\varphi_n) \leq \sum_n I(g_n)$.

The rest of the properties are easily seen.

Definition 3. Let $\mathcal{L}^1(\mathbb{R})$ denote the set of functions $f: \mathbb{R} \to \mathbb{C}$ such that for a given $\varepsilon > 0$, there exists $g \in K(\mathbb{R})$ such that $|| f - g || < \varepsilon$.

If $f \in \mathcal{L}^1(\mathbb{R})$, we define $I(f) := \lim I(f_n)$, where $f_n \in K(\mathbb{R})$ is such that $|| f - f_n || \to 0$.

Proposition 4. The following hold:

- (a) $\mathcal{L}^1(\mathbb{R})$ is a complex vector space.
- (b) If $f \in \mathcal{L}^1(\mathbb{R})$, so do $\overline{f}, |f|$.
- (c) $I(f)$ is well-defined.
- (d) I extends the Riemann integral on $K(\mathbb{R})$ to $\mathcal{L}^1(\mathbb{R})$.
- (e) *I* is linear and positive (that is, $I(f) \geq 0$ if $f \geq 0$) on $\mathcal{L}^1(\mathbb{R})$.
- (f) $I(|f|) = ||f||$ for $f \in \mathcal{L}^1(\mathbb{R})$.

Theorem 5 (Completeness of $\mathcal{L}^1(\mathbb{R})$). If (f_n) is a sequence in $\mathcal{L}^1(\mathbb{R})$ such that $|| f_n - f_m || \to 0$ as $n, m \to \infty$, then there exists an $f \in \mathcal{L}^1(\mathbb{R})$ such that $|| f - f_n || \to 0$.

Proof. Let (f_n) be as in the statement. We may assume, going to a subsequence if necessary, that $|| f_{n+1} - f_n || < 2^{-n}$ for all n. Define

$$
f(t) := \begin{cases} \lim f_n(t), & \text{if it exists} \\ 0, & \text{otherwise.} \end{cases}
$$

Fix $n \in N$. Let $t \in \mathbb{R}$ be such that $\lim f_n(t)$ exists. Then we have

$$
f(t) - f_n(t) = \sum_{k=n}^{\infty} (f_{k+1}(t) - f_k(t)),
$$
\n(1)

so that

$$
|f(t) - f_n(t)| \le \sum_{k=n}^{\infty} |f_{k+1}(t) - f_k(t)|.
$$
 (2)

If the last (absolute) sum is finite, the first sum is finite and hence $\lim_{n} f_n(t)$ exists. On the other hand, if $\lim_{n} f_n(t)$ does not exist, the absolute sum is infinite and hence the inequality (2) is trivially true. By (iii) of Poroposition 2, we get

$$
||f - f_n|| \le \sum_{k=n}^{\infty} ||f_{k+1} - f_k|| \le 2^{1-n}.
$$

This implies that $f \in \mathcal{L}^1(\mathbb{R})$ (why?) and that $f_n \to f$ in $\mathcal{L}^1(\mathbb{R})$.

Theorem 6 (Monotone Convergence Theorem). Let (f_n) be as sequence in $\mathcal{L}^1(\mathbb{R})$ such that (i) $f_n \geq 0$, (ii) $f_n \leq f_{n+1}$ for $n \in \mathbb{N}$ and (iii) $\sup I(f_n) < \infty$. If $f_n \to f$ pointwise, then $f \in \mathcal{L}^1(\mathbb{R})$ and we have $I(f) = \lim I(f_n)$.

 \Box

 \Box

Proof. As in the proof of the last theorem, we have

$$
||f - f_n|| \leq \sum_{k=n}^{\infty} ||f_{k+1} - f_k||
$$

=
$$
\sum_{k=n}^{\infty} I(f_{k+1} - f_k)
$$

=
$$
\lim_{m} I(f_m) - I(f_n).
$$
 (3)

The RHS of (3) converges to 0 as $n \to \infty$. It follows that $f \in \mathcal{L}^1(\mathbb{R})$. We also have

$$
|| f - f_n || = I(f - f_n) = I(f) - I(f_n),
$$

so that we obtain $I(f) = \lim_{n} I(f_n)$.

Theorem 7 (Dominated Convergence Theorem). Let (f_n) be a sequence in $\mathcal{L}^1(\mathbb{R})$ such that $\lim f_n(t)$ exists for all $t \in \mathbb{R}$. Let f be the limit function. Assume that there exists $g \in \mathcal{L}^1(\mathbb{R})$ such that $|f_n(t)| \leq g(t)$ for $t \in \mathbb{R}$. Then $f \in \mathcal{L}^1(\mathbb{R})$ and we have $I(f) = \lim_n I(f_n)$.

Proof. This is deduced from MCT by the usual method. See my notes on Lebesgue Integral— Daniell's approach for details. \Box

Definition 8. We say that a function $f: \mathbb{R} \to \mathbb{C}$ is *integrable* if $f \in \mathcal{L}^1(\mathbb{R})$. Note that for any integrable function $|| f || < \infty$.

Example 9. For any (finite) interval $J := (a, b)$, $[a, b]$, $[a, b]$, $[a, b)$, the characteristic function $\mathbf{1}_J$ is integrable. Any step function on a compact interval is integrable.

Definition 10. A subset $E \subset \mathbb{R}$ is said to be a *null set* or a set of measure zero if the characteristic function $\mathbf{1}_E \in \mathcal{L}^1(\mathbb{R})$ and $I(\mathbf{1}_E) = 0$.

Proposition 11. The following are true:

- (a) A subset of a null set is a null set.
- (b) A countable union of null sets is a null set.
- (c) A singleton subset is negligible and hence any countable subset of $\mathbb R$ is a null set.
- (d) If $I(f) = 0$, then the set $\{x : f(x) \neq 0\}$ is a null set.

Definition 12. (i) We say that a property P is true almost everywhere if the set of points where P is not true is a null set.

(ii) We say that a subset $E \subset \mathbb{R}$ is integrable iff $\mathbf{1}_E \in \mathcal{L}^1(\mathbb{R})$.

(iii) We say that subset $E \subset \mathbb{R}$ is *measurable* iff $E \cap K$ is integrable for all compact subsets of R.

Proposition 13. The following hold:

- (a) The union of a countable family of measurable subsets is measurable.
- (b) The intersection of a countable family of measurable subsets is measurable.
- (c) The complement of a measurable set is measurable.
- (d) Any interval is measurable.
- (e) All open sets and all closed sets are measurable.

 \Box

 \Box

 \Box

Ex. 14. Define $||f||_2 := ||f^2||_2$ ^{1/2} for $f: \mathbb{R} \to \mathbb{C}$. Prove the following: (i) If $||f||_2 < \infty$ and $||g||_2 < \infty$, then $||fg|| < ||f||_2 ||g||_2$, (ii) $||\lambda f||_2 \le |\lambda| ||f||_2$, and (iii) if $|f(t)| \le \sum |f_n|$, then $|| f ||_2 \leq \sum_n || f_n ||_2$. Define $\mathcal{L}^2(\mathbb{R})$ and show that it is complete with respect to the seminorm $\|\n\|_2$.