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This article gives a very brief account of the theory of Lebesgue integral which avoids a
lengthy treatment of measure theory. The omitted proofs are either standard or easy. This
article Follows closely Van Daele and Riesz-Nagy’ treatise on Functional Analysis. Even when
one write all the details, the article may swell up to 8 pages, in any case, it will be well within
10 pages!

One quickly reviews the following three items:
1. Integral I(s) of step functions.
2. Extension of the integral I to Cfa, b] and the standard properties.
3. Integral I on K (R), the space of continuous functions with compact support.

Definition 1. Let f: R — C be function. Define || f||, taking values in [0, oo], by setting

| £ := inf {Z I(gn) : gn € K(R), gn >0 and [f(t)] < gn(t), forall t € R} .

n=1

The properties of this map || || : K(R) — [0, oc] are given in the next porposition.

Proposition 2. Let f,: R — C, n € N, be functions and A € C. Then
(i) We have || f|| = I(|f]) for f € K(R).
(i) AL = [ALIA-
(ili) If [f ()] < 22, fu(t) for t € R, then || f]| < 32, [ fnll-

Proof. Idea of the proof: Only the first one requires proof, which is an easy application of
Dini’s theorem (on uniform convergence).

It is clear that || f|| < I(|f|). Let (gn) be a sequence as in the definition of || f||. Define

h,, as follows:
ho = 0; h, = min <|f|,ng> .

k=1
The functions h,, are positive continuous functions with compact support as their supports are
contained in the support of f. The sequence (h,,) increases to | f|. We can apply Dini’s theorem
to conclude that h,, converges uniformly to |f|. Hence I(h,,) — I(|f|) (by an elementary result
in Riemann integration). If we let ¢,, := h,, — hy,—1, then the sequence (¢, ) has the properties



stated for functions g, that appear in the definition of || f||. For all z, we have ¢, (z) < hy(z)
and therefore Y I(¢n) <>, I(gn).

The rest of the properties are easily seen. ]

Definition 3. Let £!(R) denote the set of functions f: R — C such that for a given ¢ > 0,
there exists g € K(R) such that || f — g < e.

If f € LY(R), we define I(f) := lim I(f,), where f,, € K(R) is such that || f — fu| — 0.

Proposition 4. The following hold:
(a) L1(R) is a complex vector space.
(b) If | € LX(R), s0 do T, |f].
(c) I(f) is well-defined.
(d) I estends the Riemann integral on K(R) to L*(R).
(e) I is linear and positive (that is, I(f) > 0 if f >0) on LY(R).
(f)

I(If1) = I £II for f € LY(R). =

Theorem 5 (Completeness of L1 (R)). If (f,) is a sequence in L (R) such that || fn, — fm| — 0
as n,m — oo, then there exists an f € LY(R) such that || f — fn| — O.

Proof. Let (f,) be as in the statement. We may assume, going to a subsequence if necessary,
that || fnr1 — fnll < 27" for all n. Define

0, otherwise.

im if it exi
() = {1 fn(t), t exists

Fix n € N. Let t € R be such that lim f,,(¢) exists. Then we have

F) = falt) =Y (fara(t) = fi(t)), (1)
k=n
so that
|f(t) = fu()] < Z | fre+1(t) — fr(D)]- (2)
k=n

If the last (absolute) sum is finite, the first sum is finite and hence lim,, f,,(¢) exists. On the
other hand, if lim,, f,,(t) does not exist, the absolute sum is infinite and hence the inequality
(2) is trivially true. By (iii) of Poroposition 2, we get

1f = Fall €D M fasn — frll <2077
k=n
This implies that f € £1(R) (why?) and that f, — f in £(R). O

Theorem 6 (Monotone Convergence Theorem). Let (f,,) be as sequence in L1(R) such that
(i) fn >0, (it) fr, < fot1 for n € N and (4ii) sup I(f,) < oo. If f — [ pointwise, then
f € LY(R) and we have I(f) =lim I(f,).



Proof. As in the proof of the last theorem, we have

1=l < S s — il
k=n

= > I(fer1— fr)
k=n
= hrgll(fm)_l(fn)- (3)

The RHS of (3) converges to 0 as n — oc. It follows that f € £1(R). We also have

Hf_an :I(f_fn) :I(f)_I(fn)a
so that we obtain I(f) = lim, I(fy,). O

Theorem 7 (Dominated Convergence Theorem). Let (f,,) be a sequence in L'(R) such that
lim f,,(t) exists for allt € R. Let f be the limit function. Assume that there exists g € L*(R)
such that |f,(t)] < g(t) fort € R. Then f € LY(R) and we have I(f) = lim, I(f,).

Proof. This is deduced from MCT by the usual method. See my notes on Lebesgue Integral—
Daniell’s approach for details. O

Definition 8. We say that a function f: R — C is integrable if f € L!(R). Note that for any
integrable function || f|| < oo.

Example 9. For any (finite) interval J := (a, b), [a, ], (a, b], [a,b), the characteristic function
1; is integrable. Any step function on a compact interval is integrable.

Definition 10. A subset £ C R is said to be a null set or a set of measure zero if the
characteristic function 1z € £L}(R) and I(1g) = 0.

Proposition 11. The following are true:
(a) A subset of a null set is a null set.
(b) A countable union of null sets is a null set.
(c) A singleton subset is negligible and hence any countable subset of R is a null set.
(d) If I(f) =0, then the set {z : f(z) # 0} is a null set. O

Definition 12. (i) We say that a property P is true almost everywhere if the set of points
where P is not true is a null set.

(ii) We say that a subset E C R is integrable iff 15 € L1(R).

(iii) We say that subset E C R is measurable iff ENK is integrable for all compact subsets
of R.

Proposition 13. The following hold:
(a) The union of a countable family of measurable subsets is measurable.
(b) The intersection of a countable family of measurable subsets is measurable.
(¢c) The complement of a measurable set is measurable.
(d) Any interval is measurable.
(e) All open sets and all closed sets are measurable. O



Ex. 14. Define || f||, := Hf2H1/2 for f: R — C. Prove the following: (i) If || f||, < oo and

lglly < oo, then [[fgll < f[ly 1glla, (i) [[AFlly < IAHIf NIy, and (i) if [f(£)] < 32 1fnl, then
£l <32, | fally- Define £2(R) and show that it is complete with respect to the seminorm

lo-



