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This article gives a very brief account of the theory of Lebesgue integral which avoids a
lengthy treatment of measure theory. The omitted proofs are either standard or easy. This
article Follows closely Van Daele and Riesz-Nagy’ treatise on Functional Analysis. Even when
one write all the details, the article may swell up to 8 pages, in any case, it will be well within
10 pages!

One quickly reviews the following three items:
1. Integral I(s) of step functions.
2. Extension of the integral I to C[a, b] and the standard properties.
3. Integral I on K(R), the space of continuous functions with compact support.

Definition 1. Let f : R→ C be function. Define ‖f ‖, taking values in [0,∞], by setting

‖f ‖ := inf

{ ∞∑
n=1

I(gn) : gn ∈ K(R), gn ≥ 0 and |f(t)| ≤
∑
n

gn(t), for all t ∈ R

}
.

The properties of this map ‖ ‖ : K(R)→ [0,∞] are given in the next porposition.

Proposition 2. Let fn : R→ C, n ∈ N, be functions and λ ∈ C. Then
(i) We have ‖f ‖ = I(|f |) for f ∈ K(R).
(ii) ‖λf ‖ = |λ| ‖f ‖.
(iii) If |f(t)| ≤

∑
n fn(t) for t ∈ R, then ‖f ‖ ≤

∑
n ‖fn‖.

Proof. Idea of the proof: Only the first one requires proof, which is an easy application of
Dini’s theorem (on uniform convergence).

It is clear that ‖f ‖ ≤ I(|f |). Let (gn) be a sequence as in the definition of ‖f ‖. Define
hn as follows:

h0 = 0; hn = min

(
|f |,

n∑
k=1

gk

)
.

The functions hn are positive continuous functions with compact support as their supports are
contained in the support of f . The sequence (hn) increases to |f |. We can apply Dini’s theorem
to conclude that hn converges uniformly to |f |. Hence I(hn)→ I(|f |) (by an elementary result
in Riemann integration). If we let ϕn := hn−hn−1, then the sequence (ϕn) has the properties
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stated for functions gn that appear in the definition of ‖f ‖. For all x, we have ϕn(x) ≤ hn(x)
and therefore

∑
n I(ϕn) ≤

∑
n I(gn).

The rest of the properties are easily seen.

Definition 3. Let L1(R) denote the set of functions f : R → C such that for a given ε > 0,
there exists g ∈ K(R) such that ‖f − g‖ < ε.

If f ∈ L1(R), we define I(f) := lim I(fn), where fn ∈ K(R) is such that ‖f − fn‖ → 0.

Proposition 4. The following hold:
(a) L1(R) is a complex vector space.
(b) If f ∈ L1(R), so do f, |f |.
(c) I(f) is well-defined.
(d) I extends the Riemann integral on K(R) to L1(R).
(e) I is linear and positive (that is, I(f) ≥ 0 if f ≥ 0) on L1(R).
(f) I(|f |) = ‖f ‖ for f ∈ L1(R).

Theorem 5 (Completeness of L1(R)). If (fn) is a sequence in L1(R) such that ‖fn − fm‖ → 0
as n,m→∞, then there exists an f ∈ L1(R) such that ‖f − fn‖ → 0.

Proof. Let (fn) be as in the statement. We may assume, going to a subsequence if necessary,
that ‖fn+1 − fn‖ < 2−n for all n. Define

f(t) :=

{
lim fn(t), if it exists

0, otherwise.

Fix n ∈ N . Let t ∈ R be such that lim fn(t) exists. Then we have

f(t)− fn(t) =
∞∑
k=n

(fk+1(t)− fk(t)), (1)

so that

|f(t)− fn(t)| ≤
∞∑
k=n

|fk+1(t)− fk(t)|. (2)

If the last (absolute) sum is finite, the first sum is finite and hence limn fn(t) exists. On the
other hand, if limn fn(t) does not exist, the absolute sum is infinite and hence the inequality
(2) is trivially true. By (iii) of Poroposition 2, we get

‖f − fn‖ ≤
∞∑
k=n

‖fk+1 − fk ‖ ≤ 21−n.

This implies that f ∈ L1(R) (why?) and that fn → f in L1(R).

Theorem 6 (Monotone Convergence Theorem). Let (fn) be as sequence in L1(R) such that
(i) fn ≥ 0, (ii) fn ≤ fn+1 for n ∈ N and (iii) sup I(fn) < ∞. If fn → f pointwise, then
f ∈ L1(R) and we have I(f) = lim I(fn).
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Proof. As in the proof of the last theorem, we have

‖f − fn‖ ≤
∞∑
k=n

‖fk+1 − fk ‖

=
∞∑
k=n

I(fk+1 − fk)

= lim
m
I(fm)− I(fn). (3)

The RHS of (3) converges to 0 as n→∞. It follows that f ∈ L1(R). We also have

‖f − fn‖ = I(f − fn) = I(f)− I(fn),

so that we obtain I(f) = limn I(fn).

Theorem 7 (Dominated Convergence Theorem). Let (fn) be a sequence in L1(R) such that
lim fn(t) exists for all t ∈ R. Let f be the limit function. Assume that there exists g ∈ L1(R)
such that |fn(t)| ≤ g(t) for t ∈ R. Then f ∈ L1(R) and we have I(f) = limn I(fn).

Proof. This is deduced from MCT by the usual method. See my notes on Lebesgue Integral—
Daniell’s approach for details.

Definition 8. We say that a function f : R→ C is integrable if f ∈ L1(R). Note that for any
integrable function ‖f ‖ <∞.

Example 9. For any (finite) interval J := (a, b), [a, b], (a, b], [a, b), the characteristic function
1J is integrable. Any step function on a compact interval is integrable.

Definition 10. A subset E ⊂ R is said to be a null set or a set of measure zero if the
characteristic function 1E ∈ L1(R) and I(1E) = 0.

Proposition 11. The following are true:
(a) A subset of a null set is a null set.
(b) A countable union of null sets is a null set.
(c) A singleton subset is negligible and hence any countable subset of R is a null set.
(d) If I(f) = 0, then the set {x : f(x) 6= 0} is a null set.

Definition 12. (i) We say that a property P is true almost everywhere if the set of points
where P is not true is a null set.

(ii) We say that a subset E ⊂ R is integrable iff 1E ∈ L1(R).

(iii) We say that subset E ⊂ R is measurable iff E∩K is integrable for all compact subsets
of R.

Proposition 13. The following hold:
(a) The union of a countable family of measurable subsets is measurable.
(b) The intersection of a countable family of measurable subsets is measurable.
(c) The complement of a measurable set is measurable.
(d) Any interval is measurable.
(e) All open sets and all closed sets are measurable.
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Ex. 14. Define ‖f ‖2 :=
∥∥f2∥∥1/2 for f : R → C. Prove the following: (i) If ‖f ‖2 < ∞ and

‖g‖2 < ∞, then ‖fg‖ < ‖f ‖2 ‖g‖2, (ii) ‖λf ‖2 ≤ |λ| ‖f ‖2, and (iii) if |f(t)| ≤
∑
|fn|, then

‖f ‖2 ≤
∑

n ‖fn‖2. Define L2(R) and show that it is complete with respect to the seminorm
‖ ‖2.
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