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Abstract

The aim of this article is to give an introduction to the structure theorem of finitely
generated modules over a PID confining ourselves only to F [X]-modules. The treatment
acquaints the reader with all basic results such as invariant factor theorem, elementary
divisor theorem, rational and Jordan canonical forms. The entire theory (up to Theo-
rem 31) can be carried out almost verbatim for finitely generated modules over a Euclidean
domain. In particular, the analogues of Theorem 25 and Theorem 31 together yield the
structure theorem for finitely generated abelian groups. In fact, we encourage the reader
to interpret, formulate the analogous results in this case and prove them as he goes through
the article. I hope that this will motivate the readers to plunge into a more leisurely and
detailed study of modules.

Definition 1. Let R be a commutative ring with identity. Let M be an abelian group (the
group operation being written additively). Assume that there is a map R ×M → M given
by (a, x) 7→ ax with the following properties:

1. (a+ b)x = ax+ bx,
2. a(x+ y) = ax+ ay,
3. ab(x) = a(bx),
4. 1x = x,

for all a, b ∈ R and x, y ∈M . Then M is called an R-module or a module over R.

The typical examples are given below.

Example 2. If R is a field, then R-modules are nothing other than vector spaces over R.

Example 3. Let M be an abelian group written additively. Let R = Z be the ring of integers.
Then M is an R-module via the map

(n, x) 7→ nx =


x+ · · ·+ x, n-times, if n > 0

0, if n = 0

(−x) + · · ·+ (−x),−n-times, if n < 0.

Example 4. If S is a subring of R, then R is an S-module in an obvious way.

Example 5. If I is an ideal of R, then I is an R-module in an obvious way.
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Example 6. Let M := Rn denote the n-fold product of R. Then if we define a(x1, . . . , xn) =
(ax1, . . . , axn), then M is an R-module.

Example 7. This is the most important example for our purpose. Let V be a vector space
over a field F and f : V → V be a linear map. Let F [X] denote the polynomial ring over
F . Given a polynomial p(X) := a0 + a1X + · · ·+ adX

d, we make V a module over F [X] by
setting

p(X)v ≡ pv := (a0I + a1f + · · · adfd)v.

For example, if p(X) = 1 + 2X − 4X3, then pv = v + 2f(v)− f3(v). One easily verifies that
with this operation (of course, along with the vector addition!) V becomes an F [X]-module.

To show the dependence on f of the module structure on V , we denote this module by
Vf .

Remark 8. In an R-module M , it is possible that ax = 0 with neither x being the additive
identity 0 in M nor a being the zero element of R. Give examples of such a phenomenon in
the case of Examples 3 and 7.

Definition 9. Let S ⊂ M where M is an R-module. The set Ann (S) := {a ∈ R : ax =
0 for all x ∈ S} is called the annihilator of S.

If S = {v}, then we denote Ann (S) by Ann (v).

If Ann (v) 6= (0), then we say that v is a torsion element. If 0 ∈ M is the only element
which is torsion, then M is said to be torsion-free.

Ex. 10. Show that Ann (S) is an ideal in R.

Ex. 11. (a) What are the torsion elements in Vf? When is Vf torsion free? (b) What are
the torsion elements in a Z-module?

Ex. 12. Think of interesting subsets S in Examples 3 and 7 and find their annihilators.

Ex. 13. If m(X) is the minimal polynomial of f : V → V , then Ann (Vf ) is the principal
ideal (m(X)) in F [X].

Ex. 14. (i) Define a submodule of an R-module M .
Show that W ⊂ V is an F [X]-submodule of Vf iff W is an f -invariant subspace.
What are the submodules of R considered as a module over itself?
What are the submodules of an abelian group considered as a module over Z?

(ii) Define the quotient module of M with respect to a submodule N of M .
(iii) Define an R-module homomorphisms between two R-modules Mi, i = 1, 2.
(iv) What do you mean by saying that a subset S of M is a set of generators for M over R?
(v) When do you say an R-module is finitely generated?
(vi) Is Vf finitely generated?

Definition 15. An R-module M is said to be cyclic if it is generated by a single element.

Ex. 16. Give examples of cyclic R-modules in the case of Examples 3 and 7.

Proposition 17. Let M = [v] be a cyclic F [X]-module whose annihilator Ann (M) is the
ideal generated by p(X) of degree d. Then M has a natural structure of a vector space over
F of dimension d.
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Proof. The reader is urged to prove this on his own.

The elements v,Xv, · · · , Xd−1v are linearly independent over F , by the very definition of
the polynomial p. Thus the F -span {v,Xv, . . . ,Xd−1v} = M . Since M is an F [X]-module,
it is a module over F also and it has {v,Xv, . . . ,Xd−1v} as a basis. Hence the result.

Question 18. What is the analogue of the last result in the case of an abelian group consid-
ered as a Z-module?

Ex. 19. Formulate and prove First isomorphism theorem for module homomorphisms.

Proposition 20. If M is an cyclic R-module, then M is isomorphic to R/Ann (M) as R-
modules.

Proof. The reader should prove this on his own.

Let M = [v]. Consider the map f : R → M given by f(r) = rv. Then f is onto and the
kernel of f is Ann (v) = Ann (M). The result follows from the first isomorphism theorem.

Question 21. What is the analogue of the last result in the case of an abelian group consid-
ered as a Z-module?

Ex. 22. Deduce Proposition 17 from the last proposition.

Ex. 23. Show that any torsion free cyclic R-module is isomorphic to R itself. What is the
analogue of this in the case of an abelian group considered as a Z-module?

Recall that two linear maps f, g : V → V are similar iff there exists an automorphism
ϕ : V → V such that g = ϕ−1 ◦ f ◦ ϕ.

Ex. 24. Let f, g : V → V be linear maps of V . Then show that f and g are similar iff the
modules Vf and Vg are isomorphic as F [X]-modules.

Theorem 25. Let M be a finitely generated F [X]-module. Then M can be decomposed into
a direct sum of cyclic submodules

M = [v1]⊕ · · · ⊕ [vk], where Ann (v1) ⊆ Ann (v2) ⊆ · · · ⊆ Ann (vk) and Ann (vk) 6= F [X].

Furthermore, the ideals Ann (vi) are uniquely determined by M .

Proof. We start with an easy observation: If w1, . . . , wl generate M , so do w1, . . . , wl−1, wl +
qwj for q ∈ F [X] and 1 ≤ j ≤ l − 1.

Let k be the smallest number of elements required to generate M .

Easy Case: Suppose that we can find a set {v1, . . . , vk} of generators among which no
non-trivial relation holds, that is, if a1v1 + · · · + akvk = 0 implies that ai = 0 for 1 ≤ i ≤ k.
Then, we have,

M = [v1]⊕ · · · ⊕ [vk]

and Ann (vi) = (0) for each i. The first part of the theorem is now established in this case.
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The left out case is when any set of k generators gives rise to a non-trivial relation among
them. Then there exists a system {v1, . . . , vk} of generators for which a relation of the form
a1v1 + · · · + akvk holds with a nonzero coefficient ai of minimum degree. (Go through this
assumption once again to understand it properly! We shall refer to this as the minimality
assumption.) We may assume that i = k.

Claim 1. Each aj is a multiple of ak for 1 ≤ j ≤ k − 1, say, aj = qjak.

Reason: For, if aj = qjak + rj with deg rj < deg ak, then

a1v1 + · · ·+ rjvj + · · ·+ ak(vk + qjvj) = 0.

Thus, we see that {v1, · · · , vj · · · , vk + qjvj} is a set of generators with a non-trivial

relation. If rj 6= 0, then this would contradict our minimality assumption on ak.

Claim 2. We claim that if b1v1 + · · ·+ bkvk = 0, then bk is a multiple of ak.

Reason: For, if bk = qak + r with deg r < deg ak, then by subtracting q times the first
relation from the second we obtain

(b1 − qa1)v1 + · · ·+ rvk = 0.

As in the last claim, we deduce that r = 0.

Using the notation of Claim 1, if we set wk := q1v1+ · · · qk−1vk−1+vk, then Claim 1 shows
that akwk = 0.

Let M ′ := [v1, . . . , vk−1], then M = M ′ ⊕ [wk]. (Why?)

Reason: Since the relation b1v1 + · · ·+ bk−1vk−1 + bkwk = 0 implies that bk is a multiple

of ak by Claim 2. Since akwk = 0, we see that bkwk = 0. Hence both the summands

b1v1 + · · ·+ bk−1vk−1 and bkwk are zero. Hence the sum is direct.

We are now ready to prove the first part of the theorem in the second case by induction
on k. We can write M ′ as a direct sum

M ′ = [w1]⊕ · · · ⊕ [wk−1],

with Ann (w1) ⊂ · · · ⊂ Ann (wk−1).

It remains to prove that Ann (wk−1) ⊂ Ann (wk). If q ∈ Ann (wk−1), then qwk−1 = 0
so that qwk−1 + akwk = 0. But then by Claim 1, it follows that ak divides q and hence
q ∈ Ann (wk). This completes the proof of the first part of the theorem.

We now attend to uniqueness. Let us assume that r of the ideals Ann (vi) are zero
(0 ≤ i ≤ r). Define

M1 := [v1]⊕ · · · ⊕ [vr]

M2 := [vr+1]⊕ · · · ⊕ [vk].

Clearly M2 is the set of torsion elements, that is,

M2 = {x ∈M : Ann (x) 6= (0)}.
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For, if x = p1v1 + · · ·+pkvk ∈M is such that qx = 0 for some nonzero q ∈ F [X], since the

sum is direct, it follows that qp1v1 = · · · = qpkvk = 0. Since Ann (vi) = 0 for 1 ≤ i ≤ r,

we deduce that qp1 = · · · = qpr = 0. Therefore, pi = 0, for 1 ≤ i ≤ r.

Thus, M2 is uniquely determined by M .

Using the decomposition M = M1⊕M2, we can write any x ∈M in the form x = x1 +x2
with xi ∈Mi, i = 1, 2. The map x 7→ x1 is an R-module homomorphism of M onto M1 with
kernel M2. So, M1 is isomorphic to M/M2, by the first isomorphism theorem (Ex. 19).1

Thus the proof of the uniqueness of the invariant factors is now reduced to the special
cases where M consists of torsion elements alone or where M is torsion-free. The first case
will be attended to after Theorem 31.

Let us therefore assume that M = [v1] ⊕ · · · [vk] where Ann (vi) = (0) for 1 ≤ i ≤ k. We
have to show that k is uniquely determined by M . The idea is to show that k is the maximum
number of linearly independent elements over F [X]. (What is the meaning of the italicized
phrase?)

Reason: We say that distinct elements w1, . . . , wr ∈ M are linearly independent over
F [X] if every relation of the form f1w1 + · · ·+ frwr = 0 implies that fi = 0 for 1 ≤ i ≤ r.
The map

p1w1 + · · ·+ prwr 7→ (p1, . . . , pr)

is an F [X]-isomorphism of M onto F [X]r. This maps therefore preserves linear indepen-

dence over F [X]. Let F (X) denote the field of quotients f/g where f, g ∈ F [X] with

g 6= 0. Then the linear independence of elements of F [X]r over F [X] is equivalent to

the their linear independence as elements of the vector space F (X)r over the field F (X).

(Why? Because, the denominators can be cleared!)

Thus k is the maximum number of linearly independent elements of M over F [X]. Therefore,
it is an invariant of M .

Ex. 26. Formulate the analogue of the last result in the case of an abelian group considered
as a Z-module. Modify the proof above to prove your formulation.

Definition 27. The ideals Ann (vi) or their monic generators are called invariant factors of
M .

Ex. 28. Let M = Z⊕ Z2. Let x = (1, 0), y = (0, 1), x′ = (1, 1). Then M = [x]⊕ [y] as well
as M = [x′]⊕ [y].

Proposition 29. Let M be a cyclic F [X]-module. Let the annihilator Ann (M) be generated
by a monic polynomial m(X). Assume that pi, 1 ≤ i ≤ r, be the distinct monic irreducible
factors of m in F [X]. Then

M = [v1]⊕ · · · ⊕ [vr],

where Ann (vi) is the ideal generated by a power of pi, 1 ≤ i ≤ r.
1Note that we do not claim that M1 is uniquely determined by M . See Ex. 28.
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Proof. Let M = [v]. Assume that m = fg where f and g are relatively prime. If w := fv,
then Ann (w) = (g): for qw = 0 implies qf ∈ (m) so that m divides qf , that is, g divides q.
Similarly, if u = gv, then Ann (u) = (f).

Since f and g are relatively prime, there exist a, b ∈ F [X] such that af + bg = 1. This
implies that [v] = [w] + [u]. (Check!) Also, any element x ∈ [w] ∩ [u] is annihilated by both
by f and g. It follows that [w] ∩ [u] = (0) and so the sum [v] = [w] + [u] is direct.

The general case follows by induction on the number of distinct irreducible factors of
p.

Ex. 30. Formulate the analogue of the last result in the case of an abelian group considered
as a Z-module. Modify the proof above to prove your formulation.

Theorem 31. Let M be a finitely generated F [X]-module. Assume that its annihilator
Ann (M) is generated by a nonzero monic polynomial m(X). If pi, 1 ≤ i ≤ r, are the
distinct monic irreducible factors of m(X), then

M = K1 ⊕ · · · ⊕Kr,

where each Ki is the submodule of all elements in M annihilated by some power of pi.

Moreover, each Ki may be expressed as a direct sum

Ki = [vi1]⊕ · · · ⊕ [viki ],

where Ann (vi1) ⊂ Ann (vi2) ⊂ · · · ⊂ Ann (viki).

The ideals Ann (vij), (1 ≤ i ≤ r, 1 ≤ j ≤ ki), are uniquely determined by M .

Proof. The proof is a typical case of book-keeping exercise using Theorem 25 and Proposi-
tion 29.

We decompose M into a direct sum of cyclic submodules each of which is annihilated by
some power of an irreducible factor of m. The set Ki of all “vectors” annihilated by some
power of pi is therefore the direct sum of those cyclic submodules that are annihilated by
some power of pi. We may enumerate these submodules as

[vi1], . . . , [viki ] where Ann (vij) = [p
nij

i ] and ni1 ≥ ni2 ≥ · · · ≥ niki .

Since the submodules Ki are uniquely determined by M , to establish the uniqueness of
elementary divisors, we can restrict ourselves to the case when m is a power of an irreducible
polynomial, say p. Then

M = [v1]⊕ · · · ⊕ [vk] where Ann (vj) = (pnj ) and n1 ≥ n2 ≥ · · · ≥ nk.

In particular, Ann (M) = (pn1).

We now prove the result by induction on n1. The map v 7→ pv is an F [X]-homomorphism
of M to M . Let K be the kernel of this homomorphism. Then

∑k
i=1 qivi ∈ K iff each qi is a

multiple of pni−1, 1 ≤ i ≤ k. Hence K is the direct sum of k cyclic submodules each of which
has (p) as its annihilator. By Proposition 17, we see that

dimF K = k × deg p.
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Therefore, k is uniquely determined by M . Now pn1−1 generates Ann (pM) and so by induc-
tion hypothesis, the integers

n1 − 1 ≥ n2 − 1 ≥ · · · ≥ nl − 1 > 0

are determined uniquely. Finally the sequence

n1 ≥ n2 ≥ · · · ≥ nl > nl+1 = · · · = nk = 1

is uniquely determined by M .

Completion of the proof of Theorem 25. The last part of Theorem 25 now follows since
the invariant factor Ann (vi) of the said theorem is generated by

∏
i p

nij

i where the product
is taken over all i for which nij is defined.

Ex. 32. Formulate the analogue of the last result in the case of an abelian group considered
as a Z-module. Modify the proof above to prove your formulation.

Definition 33. The ideals Ann (vij) are called the elementary divisors of M .

In the case when M = Vf , the invariant factor and elementary divisors are called namely
the invariant factors of f and elementary divisors of f .

Proposition 34. Two finitely generated modules over F [X] are isomorphic iff they have the
same invariant factors.

Two finitely generated torsion modules over F [X] are isomorphic iff they have the same
elementary divisors.

Proof. This is an immediate consequence of Theorems 25 and 31 and Proposition 20.

Question 35. What is the analogue of the last result in the case of abelian groups?

Lemma 36. If Vf is a cyclic F [X]-module with generator, say, v, then V has an ordered
basis with respect to which f has a matrix

B =



0 0 0 . . . a1
1 0 0 . . . a2
0 1 0 . . . a3

. . .
. . .

0 0 0 1 0 ad−1
0 0 0 1 ad


where mv(X) = Xd − a1Xd−1 − · · · − ad.

Proof. Proposition 17 says that {v, f(v), . . . , fd−1(v)} is an ordered basis of V . Clearly, with
respect to this basis, the matrix is as displayed above.

The matrix B of the lemma is called the companion matrix of the polynomial mv(X).
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Theorem 37. There exists an ordered basis of V with respect to which f has a matrix
diag (B1, . . . , Bk) where each Bj is of the form B of Lemma 36.

Proof. This is an immediate consequence of Theorem 25.

The matrix of the last theorem is called the rational canonical form of f .

If we assume that the minimal polynomial m(X) of f can be factorized into linear factors
in F [X], then we can arrive at a simpler matrix representation of f .

Lemma 38. If Vf is a cyclic module, say, [v]f , where mv(X) = (X − λ)n, then there is an
ordered basis of V with respect to which f is represented by the matrix Jn(λ), where

Jn(λ) :=


λ 1

λ 1
. . .
. . . 1

λ

 .

Proof. It follows from the definition of the minimal polynomial that the set of vectors

{v, (X − λ)v, . . . , (X − λ)d−1v}

is linearly independent. Let vi := (X − λ)i−1v. Then we have

(X − λ)vi = vi+1, for 1 ≤ i ≤ n− 1 and (X − λ)vn = 0.

That is,

fv1 = λv1 + v2
...

f(vn−1) = λvn−1 + vn

f(vn) = λvn.

Hence the matrix of f with respect to {v1, . . . , vn} is as claimed.

Theorem 39. If the minimal polynomial of f is (X − λ1)m1 · · · (X − λk)mk , then an ordered
basis of V can be chosen so that the matrix of f is of the form diag (A1, . . . , Ak) where each
Ai is a square matrix diag (Ci1 . . . , Ciki) and where Cij is Jnij (λi).

Proof. This follows from Theorem 31 and Lemma 38.

The matrix of the theorem is called a Jordan canonical form of f . As each square matrix
A of size n gives rise to a linear map f of Fn, we define the notions of minimal polynomial,
invariant factor and elementary divisors of A as those of f .

It follows that two square matrices over F are similar iff they have the same invariant
factors (or they have the same elementary divisors). If F = C or any algebraically closed
field, then every square matrix is similar to a Jordan canonical matrix.
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Remark 40. With a little more work, Theorem 25 and Theorem 31 can also be established
for finitely generated modules over a principal ideal domain. We refer the reader to the set of
notes “A Course in Module Theory” by Amber Habib and Kumaresan as well as any graduate
level text on Algebra (such as the ones by Dummit and Foote or by Hungerford) for details.
I thank Professors N. Vanaja and M.I. Jinnah for a careful reading of the manuscript and
suggestions.
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