Isometries of \mathbb{R}^n and Sylvester Criterion for Positive Definite Matrices

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

1 Introduction

This article is based on a lecture given in a Workshop for College Teachers, organized by Bombay Mathematics Colloquium and Bhavan's College on September 15, 2004. I was requested to speak on two topics: one is the isometries of \mathbb{R}^3 and the other is the criterion for a symmetric matrix to be positive definite. I first review some basic facts on isometries of \mathbb{R}^n and \mathbb{R}^2 and then end up with the study of isometries of \mathbb{R}^3 . Readers with a good background can go directly to the Subsection 2.1.

I thank Professor Dhvanita Rao for the invitation and the audience for an enthusiastic response.

2 Isometries of \mathbb{R}^n

Let (X, d) and (y, d) be metric spaces. A map $f: X \to Y$ is said to be an isometry if $d(f(x_1), f(x_2)) = d(x_1, x_2)$ for all $x_1, x_2 \in X$. Note that an isometry is always one-one but in general not onto. For instance, consider $f : [1, \infty) \to [1, \infty)$ given by $f(x) = x + 1$. If f and g are isometries of X to itself, then $g \circ f$ is also an isometry. The set of surjective isometries of a metric space form a group under the composition.

We consider \mathbb{R}^n with the Euclidean inner product $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$. We then have the notion of norm or length of a vector $||x|| := \sqrt{\langle x, x \rangle}$. It is well-known that $d(x, y) := ||x - y||$ defines a metric on X. Thus (\mathbb{R}^n, d) becomes a metric space. The aim of this article is to give a complete description of all isometries of \mathbb{R}^n and look a little more geometrically into the isometries of \mathbb{R}^3 .

First a bit of convention: We consider \mathbb{R}^n as the vector space of column vectors, that is, $n \times 1$ real matrices. Given an $n \times n$ matrix A, we have a linear map on \mathbb{R}^n given by $x \mapsto Ax$. In the sequel, we shall not distinguish between the matrix A and the associated linear map. I am sure that the context will make it clear what we are referring to.

Let us first of all look at some examples of isometries. For a fixed $v \in \mathbb{R}^n$, consider the

translation $T_v: \mathbb{R}^n \to \mathbb{R}^n$ given by $T_v(x) := x + v$. Then T_v is an isometry of \mathbb{R}^n .

$$
d(T_v x, T_v y) = ||T_v x - T_v y|| = ||(x + v) - (y + v)|| = ||x - y|| = d(x, y).
$$

We now describe another important class of isometries of \mathbb{R}^n . A linear map $f: \mathbb{R}^n \to \mathbb{R}^n$ is said to be orthogonal if it preserves inner products: for every pair $x, y \in \mathbb{R}^n$, we have

$$
\langle f(x), f(y) \rangle = \langle x, y \rangle.
$$

The following result is well-known. For a proof, I refer the reader to my book on linear algebra.

Theorem 1. For a linear map $f: \mathbb{R}^n \to \mathbb{R}^n$ the following are equivalent:

1. f is orthogonal.

2. $|| f(x) || = ||x||$ for all $x \in \mathbb{R}^n$.

3. f takes an orthonormal basis of \mathbb{R}^n to an orthonormal basis.

We now look at a very special class of orthogonal maps.

Fix a unit vector $u \in \mathbb{R}^n$. Let $W := (\mathbb{R}u)^{\perp} := \{x \in \mathbb{R}^n : \langle x, u \rangle = 0\}$. Then W is a vector subspace of dimension $n-1$. This can be seen as follows. The map $f_u: \mathbb{R}^n \to \mathbb{R}$ given by $f_u(x) := \langle x, u \rangle$ is linear. It is nonzero, since $f_u(u) = 1$. Hence the image of f_u is a nonzero vector subspace and hence all of R. Also, we observe that $W = \text{ker } f_u$. Hence by the rank-nullity theorem,

$$
n = \dim \mathbb{R}^n = \dim \ker f_u + \dim \operatorname{Im} f_u.
$$

It follows that W is an $n-1$ dimensional vector subspace of \mathbb{R}^n . We thus have an orthogonal decomposition $\mathbb{R}^n = W \oplus \mathbb{R}u$. We use W as a mirror and reflect across it. Thus any vector in W is mapped to itself whereas the vector u is mapped to $-u$. Thus the reflection $\rho_W : \mathbb{R}^n \to$ \mathbb{R}^n is given by $\rho(x) = w - tu$, where $x = w + tu$, $t \in \mathbb{R}$. This map is clearly an orthogonal linear map. For, if $\{w_1, \ldots, w_{n-1}\}$ is an orthonormal basis of W, then $\{w_1, \ldots, w_{n-1}, u\}$ is an orthonormal basis of \mathbb{R}^n . The linear map ρ_W carries this orthonormal basis to the orthonormal basis $\{w_1, \ldots, w_{n-1}, -u\}$ and hence is orthogonal. We have another description of this map as follows:

$$
\rho_W(x) := x - 2 \langle x, u \rangle u. \tag{1}
$$

 \Box

The advantage of this expression is that it is basis-free. We also observe that the expression remains the same if we replace u by $-u$.

We shall look at the case when $n = 2$ in detail. We shall derive a matrix representation of ρ_W from (1). Consider the one dimensional subspace $\mathbb{R} \begin{pmatrix} \cos t \\ \sin t \end{pmatrix}$ $\sin t$). Let $u = \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}$ $\cos t$ $\bigg)$. Then

$$
\rho_W(e_1) = \begin{pmatrix} 1 \\ 0 \end{pmatrix} - 2 \left\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \right\rangle \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}
$$

$$
= \begin{pmatrix} 1 - 2\sin^2 t \\ 2\sin t \cos t \end{pmatrix} = \begin{pmatrix} \cos 2t \\ \sin 2t \end{pmatrix}
$$

$$
\rho_W(e_2) = \begin{pmatrix} 0 \\ 1 \end{pmatrix} - 2 \left\langle \begin{pmatrix} 0 \\ 1 \end{pmatrix}, \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix} \right\rangle \begin{pmatrix} -\sin t \\ \cos t \end{pmatrix}
$$

$$
= \begin{pmatrix} \sin 2t \\ -\cos 2t \end{pmatrix}.
$$

Thus the reflection about the line is given by $\rho_W = \begin{pmatrix} \cos 2t & \sin 2t \\ \sin 2t & \cos 2t \end{pmatrix}$ $\sin 2t - \cos 2t$.

Remark 2. Reflections generate the group of orthogonal linear maps. (We shall not prove this.) Thus, they are the building blocks of orthogonal linear maps. If we observe that $\rho^2 = 1$ for any reflection, then the analogy between the transpositions in a symmetric group and reflections is striking.

We now give a complete list of all orthogonal maps of \mathbb{R}^2 . Let $A: \mathbb{R}^2 \to \mathbb{R}^2$ be an orthogonal. If we represent A with respect to the standard orthonormal basis $\{e_1, e_2\}$ as a matrix, then A is either of the form

$$
\begin{pmatrix}\n\cos t & -\sin t \\
\sin t & \cos t\n\end{pmatrix}
$$
 or of the form
$$
\begin{pmatrix}\n\cos t & \sin t \\
\sin t & -\cos t\n\end{pmatrix}
$$

.

In the first case, we say that it is a rotation by an angle t in the anticlockwise direction. In the latter case, it is reflection with respect to the line $\mathbb{R} \binom{\cos(t/2)}{\sin(t/2)}$, as seen earlier.

Thus we have understood all the orthogonal maps of \mathbb{R}^2 . We wish to do the same in \mathbb{R}^3 . See Subsection 2.1.

A surprising result (Theorem 5) is that any isometry of \mathbb{R}^n that fixes the zero vector must be linear and orthogonal. A proof of this can also be found in my book. However, I indicate a slightly different proof.

Lemma 3. Let $x, y \in \mathbb{R}$. Assume that $\langle x, x \rangle = \langle x, y \rangle = \langle y, y \rangle$. Then $x = y$.

Proof. We compute the length square of $x - y$:

$$
\langle x-y, x-y \rangle = \langle x, x \rangle - 2 \langle x, y \rangle + \langle y, y \rangle = 0,
$$

in view of our hypothesis. Hence $x = y$.

Lemma 4. An isometry of \mathbb{R}^n that fixes the origin preserves the inner products.

Proof. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an isometry such that $f(0) = 0$. We need to prove that $\langle f(x), f(y) \rangle = \langle x, y \rangle$ for all $x, y \in \mathbb{R}^n$. Since $d(f(x), f(y)) = d(x, y)$, we have $|| f(x) - f(y) || =$ $||x - y||$. Taking squares, we get

$$
\langle f(x) - f(y), f(x) - f(y) \rangle = \langle x - y, x - y \rangle \text{, for all } x, y \in \mathbb{R}^n. \tag{2}
$$

Since $f(0) = 0$, setting $y = 0$ in (2), we get $\langle f(x), f(x) \rangle = \langle x, x \rangle$. Similarly, $\langle f(y), f(y) \rangle =$ $\langle y, y \rangle$. Now, if we expand both sides of (2) and cancelling equal terms such as $\langle x, x \rangle$ and $\langle y, y \rangle$, we get the desired result. \Box

Theorem 5. Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an isometry with $f(0) = 0$. Then f is an orthogonal linear map. \Box

Proof. In view of Lemma 4, we need only show that f is linear. Let $x, y \in \mathbb{R}^n$. Let $z = x + y$. We shall show first that $f(z) = f(x) + f(y)$. In view of Lemma 3, it suffices to show that

$$
\langle f(z), f(z) \rangle = \langle f(z), f(x) + f(y) \rangle = \langle f(x) + f(y), f(x) + f(y) \rangle.
$$

Expanding the last two terms, we need to show that

$$
\langle f(z), f(z) \rangle = \langle f(z), f(x) \rangle + \langle f(z), f(y) \rangle = \langle f(x), f(x) \rangle + 2 \langle f(x), f(y) \rangle + \langle f(y), f(y) \rangle. \tag{3}
$$

Since f preserves inner products, (3) holds same iff

$$
\langle z, z \rangle = \langle z, x \rangle + \langle z, y \rangle = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle, \tag{4}
$$

holds. Since $z = x + y$, (4) is clearly true!

Similarly, if we take $y = ax, a \in \mathbb{R}$, then we need to show that $f(y) = af(x)$. In view of Lemma 3, it is enough to show that

$$
\langle f(ax), f(ax)\rangle = \langle f(ax), af(x)\rangle = \langle af(x), af(x)\rangle.
$$

Since f is inner product preserving, it suffices to show that

$$
\langle ax, ax \rangle = a \langle ax, x \rangle = a^2 \langle x, x \rangle \, ,
$$

which is true.

As immediate consequences of Theorem 5, we have

Corollary 6. (i) Let $f: \mathbb{R}^n \to \mathbb{R}^n$ be an isometry. Then $f = T_v \circ A$ where $v = f(0)$. (ii) Any isometry of \mathbb{R}^n is onto.

Proof. Consider $g := T_{-v} \circ f$ where $v = f(0)$. Then clearly, g is an isometry of \mathbb{R}^n such that $g(0) = 0$. Hence g is an orthogonal linear map, say, A. Hence $f = T_v \circ A$. Thus (i) is proved.

Since any translation and any orthogonal linear map are onto, so is an isometry.

2.1 Isometries of \mathbb{R}^3

Definition 7. Given a two dimensional vector subspace W of \mathbb{R}^3 , we define a rotation in the plane W as follows. Fix an orthonormal basis $\{w_1, w_2\}$ of \mathbb{R}^3 . Fix a unit vector u such that $u \perp W$. We consider the linear map given by

$$
R_{W,t}(w_1) = \cos t w_1 + \sin t w_2
$$

\n
$$
R_{w,t}(w_2) = -\sin t w_1 + \cos t w_2
$$

\n
$$
R_{w,t}(u) = u.
$$

Clearly, $R_{W,t}$ is orthogonal. Also, with respect to the orthonormal basis $\{w_1, w_2, u\}$, it is represented by

$$
\begin{pmatrix}\n\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1\n\end{pmatrix}.
$$

 \Box

We shall refer to $R_{W,t}$ as the rotation in the plane W with $\mathbb{R}u$ as the axis of rotation. Note that $\det(R_{W,t}) = 1$.

Proposition 8. (i) Let A be a 3×3 orthogonal matrix. Assume that $\det A = 1$. Then 1 is an eigenvalue of A.

(ii) Let A be a 3×3 orthogonal matrix. Assume that $\det A = 1$. Then A is a rotation.

Proof. (i). Consider the following chain of equations:

$$
\det(A - I) = \det(A - AA^t) = \det(A(I - A^t))
$$

=
$$
\det(A) \det(I - A^t) = \det((I - A^t)^t) = \det(I - A).
$$

For any $n \times n$ matrix B, we have $\det(-B) = (-1)^n \det B$. Hence, we see that $\det(A - I) =$ $\det(I - A) = -\det(A - I)$. We conclude that $\det(A - I) = 0$. From this, (i) follows.

We now prove (ii). By (i), there exists a unit vector $u \in \mathbb{R}^3$ such that $Au = u$. Let $W := (\mathbb{R}u)^{\perp}$. Then W is a two dimensional vector subspace. We claim that $Aw \in W$ for any $w \in W$. This is seen as follows:

$$
\langle Aw, u \rangle = \langle Aw, Au \rangle = \langle w, u \rangle = 0.
$$

Thus $A \mid_W : W \to W$ is an orthogonal linear map. If we choose an orthonormal basis $\{w_1, w_2\}$ of W, then A can be represented with respect to the orthonormal basis $\{w_1, w_2, u\}$ either as

$$
\begin{pmatrix}\n\cos t & -\sin t & 0 \\
\sin t & \cos t & 0 \\
0 & 0 & 1\n\end{pmatrix}\n\text{ or as } \begin{pmatrix}\n\cos t & \sin t & 0 \\
\sin t & -\cos t & 0 \\
0 & 0 & 1\n\end{pmatrix}.
$$

The second case cannot occur as the determinant is -1, contradicting our hypothesis. Hence (ii) follows. \Box

Theorem 9. Let A be any 3×3 orthogonal matrix. Then either A is a rotation or is a rotation followed by a reflection.

Proof. If det $A = 1$, then we know that it is a rotation. So we assume that det $A = -1$. Then consider the reflection matrix corresponding to the xy plane: $\rho = \text{diag}(1 \ 1 \ -1)$. Then $B = \rho A$ has determinant 1 and hence is a rotation. Since $A = \rho B$, the theorem follows. \Box

Remark 10. Let A be an orthogonal 3×3 matrix with det $A = 1$. How can we decide whether A is a pure reflection or is a rotation followed by a reflection? If it is a pure reflection, then its eigenvalues are $+1$, $+1$, -1 . In the other case, either all eigenvalues are -1 or it has only one real eigenvalue, namely −1.

3 Sylvester Criterion for Positive Definiteness

We shall consider \mathbb{R}^n as the vector space of column vectors, that is, matrices of type $n \times 1$. The standard inner product or the dot product of two vectors $x, y \in \mathbb{R}^n$ is given by

$$
\langle x, y \rangle = x \cdot y = y^t x,
$$

where the 1×1 matrix is identified as a real number. Given an $n \times n$ matrix A, we have a linear map on \mathbb{R}^n given by $x \mapsto Ax$. In the sequel, we shall not distinguish between the matrix A and the associated linear map. I am sure that the context will make it clear what we are referring to.

A quadratic form $q: \mathbb{R}^n \to \mathbb{R}$ is said to be positive definite iff $q(v) > 0$ for any nonzero $v \in \mathbb{R}^n$. We say that an $n \times n$ real symmetric matrix A is positive definite if the associated quadratic form $q: x \mapsto x^t A x$ is positive definite.

Let us first look at lower dimensions to gain some insight. When $n = 1$, any quadratic from on R is of the form $q(x) = ax^2$. This is positive definite iff $a > 0$. Now, consider a form in two variables:

$$
q(x_1, x_2) := a_{11}x_1^2 + 2a_{12}x_1x_2 + a_{22}x_2^2.
$$

(We chose to represent the coordinates of vectors in \mathbb{R}^2 by x_1, x_2 , in stead of x, y , which are easier to type and write, so that we can perceive how the higher dimensional case will go!) Assume that this is positive definite. Then for all vectors $(x_1, 0)$ with $x_1 \neq 0$, we must have $a_{11}x_1^2 > 0$. Hence we conclude that $a_{11} > 0$. We can rewrite the form as follows:

$$
q(x_1, x_2) = a_{11} \left(x_1 + \frac{a_{12}}{a_{11}} x_2 \right)^2 + \left(a_{22} - \frac{a_{12}^2}{a_{11}} \right) x_2^2.
$$
 (5)

We choose a vector so that $x_1 + \frac{a_{12}}{a_{11}}$ $\frac{a_{12}}{a_{11}}x_2 = 0$ with $x_2 \neq 0$. It follows from (5) that $(a_{22} - \frac{a_{12}^2}{a_{11}}) > 0$. This is the same as saying that det $\begin{pmatrix} a_{11} & a_{12} \\ a_{12} & a_{22} \end{pmatrix} > 0.$

Let us now look at $n=3$. Let the quadratic form be given by $q(x_1, x_2, x_3) = \sum_{i,j=1}^3 a_{ij} x_i x_j$. If this is positive definite, by taking vectors with $x_2 = x_3 = 0$, we see that $a_{11} > 0$. Hence we rewrite the quadratic form as follows:

$$
q(x) = a_{11}\left(x_1 + \frac{a_{12}}{a_{11}}x_2 + \frac{a_{13}}{a_{11}}x_3\right)^2 + \left(a_{22} - \frac{a_{12}^2}{a_{11}}\right)x_2^2 + \left(a_{33} - \frac{a_{13}^2}{a_{11}}\right)x_3^2 + 2\left(a_{23} - \frac{a_{12}a_{13}}{a_{11}}\right)x_2x_3.
$$
\n
$$
(6)
$$

As analyzed earlier, we see that q is positive definite iff $a_{11} > 0$ and the quadratic form in the variables x_2, x_3 is positive definite. The latter entails in the conditions

$$
a_{22} - \frac{a_{12}^2}{a_{11}} > 0
$$
 and $\det \begin{pmatrix} a_{22} - \frac{a_{12}^2}{a_{11}} & a_{23} - \frac{a_{12}a_{13}}{a_{11}} \\ a_{23} - \frac{a_{12}a_{13}}{a_{11}} & a_{33} - \frac{a_{13}^2}{a_{11}} \end{pmatrix} > 0$.

The second condition may be understood if we compute the determinant of $A = (a_{ij})$, suing an elementary operation, as follows:

$$
\det A = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ 0 & a_{22} - \frac{a_{12}^2}{a_{11}} & a_{23} - \frac{a_{12}a_{13}}{a_{11}} \\ 0 & a_{23} - \frac{a_{12}a_{13}}{a_{11}} & a_{33} - \frac{a_{13}^2}{a_{11}} \end{pmatrix}.
$$

The above can be put in a more tractable form a follows. Let

$$
y = x_1 + (a_{12}/a_{11})x_2 + (a_{13}/a_{11})x_3
$$
 and $z = y - x_1$.

Then $q(x) = a_{11}y^2 - a_{11}z^2 + \sum_{i,j=2}^3 a_{ij}x_ix_j$. Now it is clear how the general case will look like. Given $q(x) = \sum_{i,j=1}^{n} a_{ij} x_i x_j$, we let

$$
y = x_1 + (a_{12}/a_{11})x_2 + \cdots + (a_{1n}/a_{11})x_n
$$
 and $z = y - x_1$.

We check that $q(x) = a_{11}y^2 - a_{11}z^2 + \sum_{i,j=2}^n a_{ij}x_ix_j$. This suggests how to proceed by induction. We now define a quadratic form that depends on $n-1$ variables, namely, x_2, \ldots, x_n : $q'(x') = \sum_{i,j=2}^n a_{ij} x_i x_j - a_{11} z^2$. If we set $b_{ij} := a_{ij} - (a_{i1} a_{1j})/a_{11}$, we find that

$$
q'(x,.) = \sum_{i,j=2}^{n} b_{ij} x_i x_j.
$$

The relation between determinants the symmetric matrix A of the quadratic form q and that of q' is given by

$$
\det A = \det \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ 0 & b_{22} & b_{23} & \dots & b_{2n} \\ 0 & b_{23} & b_{33} & \dots & b_{3n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & b_{n2} & b_{n3} & \dots & b_{nn} \end{pmatrix}
$$

.

Note that the matrix, say, B on the right side of the equation is obtained by an obvious elementary operation. If q is positive definite, then $a_{11} > 0$. Also, if we denote by $M_k(X)$ the k-th principal minor of a square matrix X, then $M_k(A) = M_k(B)$. It follows by induction that q' is positive definite and hence q is. This completes the classical proof of the criterion for the positive definiteness of a real symmetric matrix. Note that the proof carries through in the case of hermitian matrices also, with obvious modifications such as x_j^2 replaced by $z_j\overline{z}_j$ etc.

We now indicate a more conceptual and less computational proof which uses basic concepts from linear algebra.

Lemma 11. A real symmetric matrix A is positive definite iff all its eigenvalues are positive.

Proof. Let A be a real symmetric matrix of order n. If A is positive definite and λ is an eigenvalue of A with a unit eigenvector $x \in \mathbb{R}^n$, then $0 < x^t A x = Ax \cdot x = \lambda x \cdot x = \lambda$.

Conversely, if A is symmetric with all its eigenvalues positive, by diagonalization theorem, there exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors. Assume that $\{v_i: 1 \leq i \leq n\}$ n} be such a basis with $Av_i = \lambda_i v_i$. Then any $x \in \mathbb{R}^n$ can be written as $x = \sum_{i=1}^n x_i v_i$ where $x_i = x \cdot v_i$. We compute

$$
Ax \cdot x = A\left(\sum_{i=1}^{n} x_i v_i\right) \left(\sum_{j=1}^{n} x_j v_j\right) = \sum_{i,j=1}^{n} \lambda_j x_i x_j v_i \cdot v_j = \sum_{i=1}^{n} \lambda_i x_i^2 > 0
$$

if $x \neq 0$. Thus A is positive definite.

Lemma 12. Let v_1, \ldots, v_n be a basis of a vector space V. Suppose that W is a vector subspace. If dim $W > m$, then

$$
W \cap span\{v_{m+1}, \ldots, v_n\} \neq (0).
$$

 \Box

Proof. Recall that if W_j , $j = 1, 2$, are vector subspaces, then $\dim(W_1 \cap W_2) = \dim W_1 +$ $\dim W_2 - \dim(W_1 + W_2)$. Now, if $\dim W > m$, then

$$
\dim(W \cap \text{span} \{v_{m+1}, \dots, v_n\})
$$
\n
$$
= \dim W + \dim(\text{span} \{v_{m+1}, \dots, v_n\}) - \dim(W + \text{span} \{v_{m+1}, \dots, v_n\})
$$
\n
$$
> m + (n - m) - n = 0.
$$

 \Box

 \Box

The result follows.

Lemma 13. Let A be an $n \times n$ real symmetric matrix. If $\langle Aw, w \rangle > 0$ for all $w \in W$, then A has at least dim W positive eigenvalues (counted with multiplicity).

Proof. Let dim $W = r$. Let $\{v_k : 1 \leq k \leq n\}$ be an orthonormal eigen-basis of A on \mathbb{R}^n such that $Av_k = \lambda_k v_k$ for all k. Let us assume, without loss of generality, that $\lambda_k > 0$ for $1 \leq k \leq m$ and that $\lambda_k \leq 0$ for $k > m$. If $m <$ dim W, then, by Lemma 12, there is a nonzero vector $v \in W$ such that $w = a_{m+1}v_{m+1} + \cdots + a_nv_n$. We compute

$$
\langle Aw, w \rangle = \sum_{j,k=m+1}^{n} a_j a_k \langle Av_j, v_k \rangle = a_{m+1}^2 \lambda_{m+1} + \dots + a_n^2 \lambda_n \le 0,
$$

a contradiction. Hence $m \geq \dim W$, as required.

Definition 14. Let $A := (a_{ij})$ be an $n \times n$ matrix. Then the matrix $(a_{ij})_{1 \le i,j \le k}$ is called the k-th principal submatrix and determinant is known as the k-th principal minor.

Theorem 15 (Sylvester). A real symmetric $n \times n$ matrix is positive definite iff all its principal minors are positive.

Proof. Let A be be a real positive definite $n \times n$ symmetric matrix. Since the eigenvalues of A are positive, it follows that $\det A$, being the product of the eigenvalues must be positive. Now the restriction A_k of A to the k dimensional vector subspace $\mathbb{R}^k := \{x \in \mathbb{R}^n : x_j = 0 \text{ for } j > k\}$ is also positive definite. Clearly the matrix of A_k is the k-th principal matrix and hence its determinant must be positive by the argument above.

Let A be be a real $n \times n$ symmetric matrix all of whose principal minors are positive. We prove, by induction that A is positive definite by showing that all its eigenvalues are positive. For $n = 1$, the result is trivial. Assume the sufficiency of positive principal minors for $(n-1) \times (n-1)$ real symmetric matrices. If A is an $n \times n$ real symmetric matrix, then its $(n-1)$ -th principal submatrix is positive definite by induction. Let $W = \mathbb{R}^{n-1} \subset \mathbb{R}^n$ be the subspace whose last coordinate is 0. Then for any nonzero $w \in W$, we observe that $\langle Aw, w \rangle = \langle A_{n-1}x', x' \rangle$ where $x = (x', 0) \in \mathbb{R}^n$ and $x' \in \mathbb{R}^{n-1}$. Since A_{n-1} is positive definite by induction, we see that $\langle A_{n-1}x', x' \rangle > 0$ for $x' \in \mathbb{R}^{n-1}$. Hence $\langle Ax, x \rangle > 0$ for $x \in W$. By Lemma 12, A has at least $(n-1)$ positive eigenvalues. Now det A is the product of the eigenvalues of A and $(n-1)$ of these eigenvalues are positive. Hence, it follows that all the eigenvalues of A are positive. Hence A is positive definite. \Box

Reference

S. Kumaresan, Linear Algebra—A Geometric Approach, Prentice-Hall of India, 2000.