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1 Introduction

This article is based on a lecture given in a Workshop for College Teachers, organized by
Bombay Mathematics Colloquium and Bhavan’s College on September 15, 2004. I was re-
quested to speak on two topics: one is the isometries of R3 and the other is the criterion for
a symmetric matrix to be positive definite. I first review some basic facts on isometries of Rn

and R2 and then end up with the study of isometries of R3. Readers with a good background
can go directly to the Subsection 2.1.

I thank Professor Dhvanita Rao for the invitation and the audience for an enthusiastic
response.

2 Isometries of Rn

Let (X, d) and (y, d) be metric spaces. A map f : X → Y is said to be an isometry if
d(f(x1), f(x2)) = d(x1, x2) for all x1, x2 ∈ X. Note that an isometry is always one-one but in
general not onto. For instance, consider f : [1,∞) → [1,∞) given by f(x) = x + 1. If f and
g are isometries of X to itself, then g ◦ f is also an isometry. The set of surjective isometries
of a metric space form a group under the composition.

We consider Rn with the Euclidean inner product 〈x, y〉 =
∑n

i=1 xiyi. We then have the
notion of norm or length of a vector ‖x‖ :=

√
〈x, x〉. It is well-known that d(x, y) := ‖x− y‖

defines a metric on X. Thus (Rn, d) becomes a metric space. The aim of this article is to
give a complete description of all isometries of Rn and look a little more geometrically into
the isometries of R3.

First a bit of convention: We consider Rn as the vector space of column vectors, that is,
n× 1 real matrices. Given an n×n matrix A, we have a linear map on Rn given by x 7→ Ax.
In the sequel, we shall not distinguish between the matrix A and the associated linear map.
I am sure that the context will make it clear what we are referring to.

Let us first of all look at some examples of isometries. For a fixed v ∈ Rn, consider the
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translation Tv : Rn → Rn given by Tv(x) := x+ v. Then Tv is an isometry of Rn:

d(Tvx, Tvy) = ‖Tvx− Tvy‖ = ‖(x+ v)− (y + v)‖ = ‖x− y‖ = d(x, y).

We now describe another important class of isometries of Rn. A linear map f : Rn → Rn

is said to be orthogonal if it preserves inner products: for every pair x, y ∈ Rn, we have

〈f(x), f(y)〉 = 〈x, y〉 .

The following result is well-known. For a proof, I refer the reader to my book on linear
algebra.

Theorem 1. For a linear map f : Rn → Rn the following are equivalent:
1. f is orthogonal.
2. ‖f(x)‖ = ‖x‖ for all x ∈ Rn.
3. f takes an orthonormal basis of Rn to an orthonormal basis.

We now look at a very special class of orthogonal maps.

Fix a unit vector u ∈ Rn. Let W := (Ru)⊥ := {x ∈ Rn : 〈x, u〉 = 0}. Then W is a
vector subspace of dimension n − 1. This can be seen as follows. The map fu : Rn → R
given by fu(x) := 〈x, u〉 is linear. It is nonzero, since fu(u) = 1. Hence the image of fu is a
nonzero vector subspace and hence all of R. Also, we observe that W = ker fu. Hence by the
rank-nullity theorem,

n = dimRn = dim ker fu + dim Im fu.

It follows that W is an n− 1 dimensional vector subspace of Rn. We thus have an orthogonal
decomposition Rn = W ⊕Ru. We use W as a mirror and reflect across it. Thus any vector in
W is mapped to itself whereas the vector u is mapped to −u. Thus the reflection ρW : Rn →
Rn is given by ρ(x) = w − tu, where x = w + tu, t ∈ R. This map is clearly an orthogonal
linear map. For, if {w1, . . . , wn−1} is an orthonormal basis of W , then {w1, . . . , wn−1, u}
is an orthonormal basis of Rn. The linear map ρW carries this orthonormal basis to the
orthonormal basis {w1, . . . , wn−1,−u} and hence is orthogonal. We have another description
of this map as follows:

ρW (x) := x− 2 〈x, u〉u. (1)

The advantage of this expression is that it is basis-free. We also observe that the expression
remains the same if we replace u by −u.

We shall look at the case when n = 2 in detail. We shall derive a matrix representation

of ρW from (1). Consider the one dimensional subspace R
(

cos t
sin t

)
. Let u =

(
− sin t

cos t

)
. Then

ρW (e1) =

(
1
0

)
− 2

〈(
1
0

)
,

(
− sin t

cos t

)〉(
− sin t

cos t

)
=

(
1− 2 sin2 t
2 sin t cos t

)
=

(
cos 2t
sin 2t

)
ρW (e2) =

(
0
1

)
− 2

〈(
0
1

)
,

(
− sin t

cos t

)〉(
− sin t

cos t

)
=

(
sin 2t
− cos 2t

)
.
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Thus the reflection about the line is given by ρW =

(
cos 2t sin 2t
sin 2t − cos 2t

)
.

Remark 2. Reflections generate the group of orthogonal linear maps. (We shall not prove
this.) Thus, they are the building blocks of orthogonal linear maps. If we observe that ρ2 = 1
for any reflection, then the analogy between the transpositions in a symmetric group and
reflections is striking.

We now give a complete list of all orthogonal maps of R2. Let A : R2 → R2 be an
orthogonal. If we represent A with respect to the standard orthonormal basis {e1, e2} as a
matrix, then A is either of the form(

cos t − sin t
sin t cos t

)
or of the form

(
cos t sin t
sin t − cos t

)
.

In the first case, we say that it is a rotation by an angle t in the anticlockwise direction. In

the latter case, it is reflection with respect to the line R
(

cos(t/2)
sin(t/2)

)
, as seen earlier.

Thus we have understood all the orthogonal maps of R2. We wish to do the same in R3.
See Subsection 2.1.

A surprising result (Theorem 5) is that any isometry of Rn that fixes the zero vector must
be linear and orthogonal. A proof of this can also be found in my book. However, I indicate
a slightly different proof.

Lemma 3. Let x, y ∈ R. Assume that 〈x, x〉 = 〈x, y〉 = 〈y, y〉. Then x = y.

Proof. We compute the length square of x− y:

〈x− y, x− y〉 = 〈x, x〉 − 2 〈x, y〉+ 〈y, y〉 = 0,

in view of our hypothesis. Hence x = y.

Lemma 4. An isometry of Rn that fixes the origin preserves the inner products.

Proof. Let f : Rn → Rn be an isometry such that f(0) = 0. We need to prove that
〈f(x), f(y)〉 = 〈x, y〉 for all x, y ∈ Rn. Since d(f(x), f(y)) = d(x, y), we have ‖f(x)− f(y)‖ =
‖x− y‖. Taking squares, we get

〈f(x)− f(y), f(x)− f(y)〉 = 〈x− y, x− y〉 , for all x, y ∈ Rn. (2)

Since f(0) = 0, setting y = 0 in (2), we get 〈f(x), f(x)〉 = 〈x, x〉. Similarly, 〈f(y), f(y)〉 =
〈y, y〉. Now, if we expand both sides of (2) and cancelling equal terms such as 〈x, x〉 and
〈y, y〉, we get the desired result.

Theorem 5. Let f : Rn → Rn be an isometry with f(0) = 0. Then f is an orthogonal linear
map.
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Proof. In view of Lemma 4, we need only show that f is linear. Let x, y ∈ Rn. Let z = x+ y.
We shall show first that f(z) = f(x) + f(y). In view of Lemma 3, it suffices to show that

〈f(z), f(z)〉 = 〈f(z), f(x) + f(y)〉 = 〈f(x) + f(y), f(x) + f(y)〉 .

Expanding the last two terms, we need to show that

〈f(z), f(z)〉 = 〈f(z), f(x)〉+ 〈f(z), f(y)〉 = 〈f(x), f(x)〉+ 2 〈f(x), f(y)〉+ 〈f(y), f(y)〉 . (3)

Since f preserves inner products, (3) holds same iff

〈z, z〉 = 〈z, x〉+ 〈z, y〉 = 〈x, x〉+ 2 〈x, y〉+ 〈y, y〉 , (4)

holds. Since z = x+ y, (4) is clearly true!

Similarly, if we take y = ax, a ∈ R, then we need to show that f(y) = af(x). In view of
Lemma 3, it is enough to show that

〈f(ax), f(ax)〉 = 〈f(ax), af(x)〉 = 〈af(x), af(x)〉 .

Since f is inner product preserving, it suffices to show that

〈ax, ax〉 = a 〈ax, x〉 = a2 〈x, x〉 ,

which is true.

As immediate consequences of Theorem 5, we have

Corollary 6. (i) Let f : Rn → Rn be an isometry. Then f = Tv ◦A where v = f(0).
(ii) Any isometry of Rn is onto.

Proof. Consider g := T−v ◦ f where v = f(0). Then clearly, g is an isometry of Rn such that
g(0) = 0. Hence g is an orthogonal linear map, say, A. Hence f = Tv ◦A. Thus (i) is proved.

Since any translation and any orthogonal linear map are onto, so is an isometry.

2.1 Isometries of R3

Definition 7. Given a two dimensional vector subspace W of R3, we define a rotation in the
plane W as follows. Fix an orthonormal basis {w1, w2} of R3. Fix a unit vector u such that
u ⊥W . We consider the linear map given by

RW,t(w1) = cos t w1 + sin t w2

Rw,t(w2) = − sin t w1 + cos t w2

Rw,t(u) = u.

Clearly, RW,t is orthogonal. Also, with respect to the orthonormal basis {w1, w2, u}, it is
represented by cos t − sin t 0

sin t cos t 0
0 0 1

 .
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We shall refer to RW,t as the rotation in the plane W with Ru as the axis of rotation. Note
that det(RW,t) = 1.

Proposition 8. (i) Let A be a 3 × 3 orthogonal matrix. Assume that detA = 1. Then 1 is
an eigenvalue of A.
(ii) Let A be a 3× 3 orthogonal matrix. Assume that detA = 1. Then A is a rotation.

Proof. (i). Consider the following chain of equations:

det(A− I) = det(A−AAt) = det(A(I −At))

= det(A) det(I −At) = det((I −At)t) = det(I −A).

For any n × n matrix B, we have det(−B) = (−1)n detB. Hence, we see that det(A − I) =
det(I −A) = −det(A− I). We conclude that det(A− I) = 0. From this, (i) follows.

We now prove (ii). By (i), there exists a unit vector u ∈ R3 such that Au = u. Let
W := (Ru)⊥. Then W is a two dimensional vector subspace. We claim that Aw ∈W for any
w ∈W . This is seen as follows:

〈Aw, u〉 = 〈Aw,Au〉 = 〈w, u〉 = 0.

Thus A |W : W →W is an orthogonal linear map. If we choose an orthonormal basis {w1, w2}
of W , then A can be represented with respect to the orthonormal basis {w1, w2, u} either ascos t − sin t 0

sin t cos t 0
0 0 1

 or as

cos t sin t 0
sin t − cos t 0

0 0 1

 .

The second case cannot occur as the determinant is -1, contradicting our hypothesis. Hence
(ii) follows.

Theorem 9. Let A be any 3 × 3 orthogonal matrix. Then either A is a rotation or is a
rotation followed by a reflection.

Proof. If detA = 1, then we know that it is a rotation. So we assume that detA = −1.
Then consider the reflection matrix corresponding to the xy plane: ρ = diag(1 1 − 1). Then
B = ρA has determinant 1 and hence is a rotation. Since A = ρB, the theorem follows.

Remark 10. Let A be an orthogonal 3×3 matrix with detA = 1. How can we decide whether
A is a pure reflection or is a rotation followed by a reflection? If it is a pure reflection, then
its eigenvalues are +1,+1,−1. In the other case, either all eigenvalues are −1 or it has only
one real eigenvalue, namely −1.

3 Sylvester Criterion for Positive Definiteness

We shall consider Rn as the vector space of column vectors, that is, matrices of type n × 1.
The standard inner product or the dot product of two vectors x, y ∈ Rn is given by

〈x, y〉 = x · y = ytx,
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where the 1 × 1 matrix is identified as a real number. Given an n × n matrix A, we have
a linear map on Rn given by x 7→ Ax. In the sequel, we shall not distinguish between the
matrix A and the associated linear map. I am sure that the context will make it clear what
we are referring to.

A quadratic form q : Rn → R is said to be positive definite iff q(v) > 0 for any nonzero
v ∈ Rn. We say that an n × n real symmetric matrix A is positive definite if the associated
quadratic form q : x 7→ xtAx is positive definite.

Let us first look at lower dimensions to gain some insight. When n = 1, any quadratic
from on R is of the form q(x) = ax2. This is positive definite iff a > 0. Now, consider a form
in two variables:

q(x1, x2) := a11x
2
1 + 2a12x1x2 + a22x

2
2.

(We chose to represent the coordinates of vectors in R2 by x1, x2, in stead of x, y, which are
easier to type and write, so that we can perceive how the higher dimensional case will go!)
Assume that this is positive definite. Then for all vectors (x1, 0) with x1 6= 0, we must have
a11x

2
1 > 0. Hence we conclude that a11 > 0. We can rewrite the form as follows:

q(x1, x2) = a11

(
x1 +

a12
a11

x2

)2

+

(
a22 −

a212
a11

)
x22. (5)

We choose a vector so that x1+ a12
a11
x2 = 0 with x2 6= 0. It follows from (5) that (a22−

a212
a11

) > 0.

This is the same as saying that det

(
a11 a12
a12 a22

)
> 0.

Let us now look at n = 3. Let the quadratic form be given by q(x1, x2, x3) =
∑3

i,j=1 aijxixj .
If this is positive definite, by taking vectors with x2 = x3 = 0, we see that a11 > 0. Hence we
rewrite the quadratic form as follows:

q(x) = a11

(
x1 +

a12
a11

x2 +
a13
a11

x3

)2

+

(
a22 −

a212
a11

)
x22 +

(
a33 −

a213
a11

)
x23

+ 2

(
a23 −

a12a13
a11

)
x2x3. (6)

As analyzed earlier, we see that q is positive definite iff a11 > 0 and the quadratic form in the
variables x2, x3 is positive definite. The latter entails in the conditions

a22 −
a212
a11

> 0 and det

(
a22 −

a212
a11

a23 − a12a13
a11

a23 − a12a13
a11

a33 −
a213
a11

)
> 0.

The second condition may be understood if we compute the determinant of A = (aij), suing
an elementary operation, as follows:

detA = det

a11 a12 a13

0 a22 −
a212
a11

a23 − a12a13
a11

0 a23 − a12a13
a11

a33 −
a213
a11

 .

The above can be put in a more tractable form a follows. Let

y = x1 + (a12/a11)x2 + (a13/a11)x3 and z = y − x1.
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Then q(x) = a11y
2 − a11z2 +

∑3
i,j=2 aijxixj . Now it is clear how the general case will look

like. Given q(x) =
∑n

i,j=1 aijxixj , we let

y = x1 + (a12/a11)x2 + · · ·+ (a1n/a11)xn and z = y − x1.

We check that q(x) = a11y
2 − a11z

2 +
∑n

i,j=2 aijxixj . This suggests how to proceed by
induction. We now define a quadratic form that depends on n−1 variables, namely, x2, . . . , xn:
q′(x′) =

∑n
i,j=2 aijxixj − a11z2. If we set bij := aij − (ai1a1j)/a11, we find that

q′(x, ) =
n∑

i,j=2

bijxixj .

The relation between determinants the symmetric matrix A of the quadratic form q and that
of q′ is given by

detA = det


a11 a12 a13 . . . a1n
0 b22 b23 . . . b2n
0 b23 b33 . . . b3n
...

...
...

. . .
...

0 bn2 bn3 . . . bnn

 .

Note that the matrix, say, B on the right side of the equation is obtained by an obvious
elementary operation. If q is positive definite, then a11 > 0. Also, if we denote by Mk(X) the
k-th principal minor of a square matrix X, then Mk(A) = Mk(B). It follows by induction
that q′ is positive definite and hence q is. This completes the classical proof of the criterion
for the positive definiteness of a real symmetric matrix. Note that the proof carries through
in the case of hermitian matrices also, with obvious modifications such as x2j replaced by zjzj
etc.

We now indicate a more conceptual and less computational proof which uses basic concepts
from linear algebra.

Lemma 11. A real symmetric matrix A is positive definite iff all its eigenvalues are positive.

Proof. Let A be a real symmetric matrix of order n. If A is positive definite and λ is an
eigenvalue of A with a unit eigenvector x ∈ Rn, then 0 < xtAx = Ax · x = λx · x = λ.

Conversely, if A is symmetric with all its eigenvalues positive, by diagonalization theorem,
there exists an orthonormal basis of Rn consisting of eigenvectors. Assume that {vi : 1 ≤ i ≤
n} be such a basis with Avi = λivi. Then any x ∈ Rn can be written as x =

∑n
i=1 xivi where

xi = x · vi. We compute

Ax · x = A

(
n∑

i=1

xivi

) n∑
j=1

xjvj

 =

n∑
i,j=1

λjxixjvi · vj =

n∑
i=1

λix
2
i > 0

if x 6= 0. Thus A is positive definite.

Lemma 12. Let v1, . . . , vn be a basis of a vector space V . Suppose that W is a vector subspace.
If dimW > m, then

W ∩ span {vm+1, . . . , vn} 6= (0).
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Proof. Recall that if Wj , j = 1, 2, are vector subspaces, then dim(W1 ∩ W2) = dimW1 +
dimW2 − dim(W1 +W2). Now, if dimW > m, then

dim(W ∩ span {vm+1, . . . , vn})
= dimW + dim(span {vm+1, . . . , vn})− dim(W + span {vm+1, . . . , vn})
> m+ (n−m)− n = 0.

The result follows.

Lemma 13. Let A be an n × n real symmetric matrix. If 〈Aw,w〉 > 0 for all w ∈ W , then
A has at least dimW positive eigenvalues (counted with multiplicity).

Proof. Let dimW = r. Let {vk : 1 ≤ k ≤ n} be an orthonormal eigen-basis of A on Rn

such that Avk = λkvk for all k. Let us assume, without loss of generality, that λk > 0 for
1 ≤ k ≤ m and that λk ≤ 0 for k > m. If m < dimW , then, by Lemma 12, there is a nonzero
vector v ∈W such that w = am+1vm+1 + · · ·+ anvn. We compute

〈Aw,w〉 =
n∑

j,k=m+1

ajak 〈Avj , vk〉 = a2m+1λm+1 + · · ·+ a2nλn ≤ 0,

a contradiction. Hence m ≥ dimW , as required.

Definition 14. Let A := (aij) be an n×n matrix. Then the matrix (aij)1≤i,j≤k is called the
k-th principal submatrix and determinant is known as the k-th principal minor.

Theorem 15 (Sylvester). A real symmetric n×n matrix is positive definite iff all its principal
minors are positive.

Proof. Let A be be a real positive definite n×n symmetric matrix. Since the eigenvalues of A
are positive, it follows that detA, being the product of the eigenvalues must be positive. Now
the restriction Ak of A to the k dimensional vector subspace Rk := {x ∈ Rn : xj = 0 for j > k}
is also positive definite. Clearly the matrix of Ak is the k-th principal matrix and hence its
determinant must be positive by the argument above.

Let A be be a real n × n symmetric matrix all of whose principal minors are positive.
We prove, by induction that A is positive definite by showing that all its eigenvalues are
positive. For n = 1, the result is trivial. Assume the sufficiency of positive principal minors
for (n − 1) × (n − 1) real symmetric matrices. If A is an n × n real symmetric matrix, then
its (n − 1)-th principal submatrix is positive definite by induction. Let W = Rn−1 ⊂ Rn

be the subspace whose last coordinate is 0. Then for any nonzero w ∈ W , we observe
that〈Aw,w〉 = 〈An−1x

′, x′〉 where x = (x′, 0) ∈ Rn and x′ ∈ Rn−1. Since An−1 is positive
definite by induction, we see that 〈An−1x

′, x′〉 > 0 for x′ ∈ Rn−1. Hence 〈Ax, x〉 > 0 for
x ∈W . By Lemma 12, A has at least (n− 1) positive eigenvalues. Now detA is the product
of the eigenvalues of A and (n− 1) of these eigenvalues are positive. Hence, it follows that all
the eigenvalues of A are positive. Hence A is positive definite.
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