Jordan Canonical Form

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

We shall assume that V is a finite dimensional vector space over an algebraically closed field. We start with an easy observation.

Lemma 1. Let v_1, v_2, \ldots, v_m be linearly independent in a vector space. Assume that $v_i \in$ Span $\{w_1, \ldots, w_n\}$. Then $n \ge m$.

Proposition 2. Let $T: V \to V$ be a linear map. Then there exists a a polynomial $p(X) := \sum_{k=1}^{d} a_k X^k$ such that $p(T) := \sum_k a_k T^k = 0$.

Proof. Fix a basis v_1, \ldots, v_n of V. For each i with $1 \le i \le n$, we can find scalars a_0, a_1, \ldots, a_n such that $a_0v_1 + a_1Tv + \cdots + a_nT^nv = 0$. If we let $p_i(X) := \sum_i a_iX^i$, then $p_i(T)v_i = 0$. If we let $p = p_1 \cdots p_n$ be the product of these polynomials, then $p(T)v_i = 0$ for each i and hence p(T)v = 0 for all $v \in V$.

Proposition 3. Let $T: V \to V$ be linear. Let N(T) and R(T) denote the kernel and the range of T. Then they are invariant under T. If $N(T) \cap R(T) = \{0\}$, then $V = N(T) \oplus R(T)$.

Proof. A trivial application of the rank-nullity theorem.

Theorem 4. Any linear map on a finite dimensional vector space over an algebraically closed field has an eigen vector.

Proof. Let $T: V \to V$ be one such. By Proposition 2, there exists a polynomial p(X) with coefficients in the field such that p(T) = 0. Since the field is algebraically close, we can write $p(X) = c(X - \alpha_1) \cdots (X - \alpha_k)$. Let $v \in V$ be any nonzero vector. Let *i* be the least integer such that $c(T - \alpha_i I) \cdots (X - \alpha_i I)v = 0$. If i = 1, then *v* is an eigen vector with eigen value α_1 , otherwise, $w := (T - \alpha_{i-1}I) \cdots (T - \alpha_1 I)v$ is an eigen vector with eigen value α_i .

Proposition 5. Let λ be an eigenvalue of a linear map $T: V \to V$. Let the generalize eigensubspace of λ be defined by

$$V(\lambda) := \{ v \in V : (T - \alpha I)^k v = 0 \text{ for some } k \in \mathbb{N} \}.$$

Then there exists $r \geq 1$ such that $V(\lambda) = N((T - \lambda I)^r)$ and we have

 $V(\lambda) = N((T - \lambda I)^r)$ and $V = N((T - \lambda I)^r) \oplus R((T - \lambda I)^r)$.

The summands are invariant under T.

Proof. We show first that $V(\lambda)$ is a vector subspace. It is closed under scalar multiplication. If $v_i \in V(\lambda)$ such that $(T - \lambda I)^{k_i} v_i = 0$, then $(T - \lambda I)^k (v_1 + v_2) = 0$ for $k = \max\{k_1, k_2\}$. Since $V(\lambda) \subset V$, it is finite dimensional. If we fix a basis of $V(\lambda)$, and we take r to be the maximum of the k's corresponding to these finite number of elements, it is clear that $V(\lambda) = N((T - \lambda I)^r)$.

We claim that the intersection of the kernel and the range of $T - \lambda I)^r$ is $\{0\}$. Let w be in their intersection. Then there exists $v \in V$ such that $w = (T - \lambda I)^r v$. Since w lies in the kernel of $(T - \lambda I)^r$, it follows that $(T - \lambda I)^r w = (T - \lambda I)^{2r} v = 0$. It follows that $v \in V(\lambda)$, that is in the kernel of $(T - \lambda I)^r$. But then $w = (T - \lambda I)^r v = 0$. The claim follows. By the rank-nullity theorem, we have the direct sum decomposition as in the theorem.

Each of the summands is invariant under $(T - \lambda I)$ as well as under λI and hence under $T = (T - \lambda I) + \lambda I$.

Theorem 6. Let $T: V \to V$ be a linear map on a finite dimensional vector space over an algebraically closed field. Then V is the direct sum of generalized eigen spaces of T.

Proof. The result follows by induction (on the number of eigenvalues of T) using the last proposition.

Definition 7. A linear map $T: V \to V$ is said to be *nilpotent* of index r if $T^r = 0$ but $T^{r-1} \neq 0$.

Lemma 8. Let A be nilpotent of index r. Then we have a chain of strict inclusions

$$N(A) \subset N(A^2) \subset \cdots \subset N(A^r) = V.$$

Proof. Inclusions are obvious. By the definition of index there exists $v \in V$ such that $A^{r-1}v \neq 0$. Then the vector $A^{r-i}v \in N(A^i)$ but not in $N(A^{i-1})$. \Box

Definition 9. We say that the vectors v_1, \ldots, v_k is *independent of* a subspace $W \subset V$ if whenever a linear combination $a_1v_1 + \cdots + a_kv_k \in W$, it follows that $a_i = \text{for } 1 \leq i \leq k$.

Theorem 10 (Jordan canonical Form for Nilpotent Maps). Let $A: V \to V$ be nilpotent of index r. Let $S \subset V$ be linearly independent of A^{r-1} . Then

(a) there exist a number m and vectors v_1, \ldots, v_m such that

(i) the nonzero vectors of the form $A^j v_i$, for $j \ge 0$ and $1 \le i \le m$ from a basis of V and (ii) S is a subset of this basis.

(b) For $1 \le i \le m$, let r_i be the least integer such that $A^{r_i}v_i = 0$. Let V_i be the subspace spanned by the linearly independent set $\{A^jv_i: 0 \le i \le r_i - 1\}$. Then

$$V = V_1 \oplus \dots \oplus V_m. \tag{1}$$

(i) Each V_i is invariant under A and

(ii) A is nilpotent of index r_i on V_i .

(c) Let $\varphi(i)$ be the number of subspaces in the decomposition (1) of dimension at least *i*. Then

$$\dim N(A^i) - \dim(A^{i-1}) = \varphi(i).$$

(d) The number of subspaces in (1) of any given dimension is uniquely determined by A.

Proof. We prove the statements in (a) by induction on r. When r = 1, we have A = 0. The result is trivial in this case. Assume that the result holds for r - 1 and consider a nilpotent map of index r.

Given a subset S linearly independent of $N(A^{r-1})$, extend it a maximal such set w_1, \ldots, w_k . Then they along with any basis of $N(A^{r-1})$ is a basis of V.

We claim that the vectors Aw_i , $1 \le i \le k$, lie in $N(A^{r-1})$ and are linearly independent of $N(A^{r-2})$. For, if $a_1Aw_1 + \cdots + a_kAw_k \in N(A^{r-2})$, then, $a_1w_1 + \cdots + a_kw_k \in N(A^{r-1})$. By hypothesis on w_i , it follows that $a_i = 0$ for each *i*.

Now, A restricted to $N(A^{r-1})$ is nilpotent of degree r-1. By induction hypothesis, there are vectors v_1, \ldots, v_m including Aw_i 's such that the nonzero vectors of the form $A^j v_i$, $1 \le i \le m$ form a basis for $N(A^{r-1})$. We adjoin the vectors w_1, \ldots, w_k to them.

The rest (b) and (c) follow easily.

Example 11. Let A be nilpotent of degree 5 on a vector space of dimension 22. The bottom i rows are $N(A^i)$.

We let $J_m(\lambda)$ denote the Jordan block matrix

1	λ	0	0	0		0
	1	λ	0	0		0
		1	λ	0		0
	0	0 0 0	•••	·		•
	0	0	0	1	λ	0
	0	0	0	0	1	λ

In the decomposition of the theorem, the matrix of A restricted to V_i with respect to the specified basis, is $J_{r_i}(0)$.

Theorem 12. Let $T: V \to V$ be a linear map on a finite dimensional vector space over an algebraically closed field. Then there exists a Jordan basis for T on V so that the matrix representation A of T with respect to this basis is of the form

$$A = \operatorname{diag} \left(J_{r_1}(\lambda_1), \dots, J_{r_k}(\lambda_k) \right).$$

Proof. Immediate from Theorems 6 and 10.

Remark 13. The above proof is valid as long as there exists a polynomial p such that p(A) = 0 and p can be factored into linear polynomials over the field of definition of the vector space.