
Jordan Canonical Form

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

We shall assume that V is a finite dimensional vector space over an algebraically closed
field. We start with an easy observation.

Lemma 1. Let v1, v2, . . . , vm be linearly independent in a vector space. Assume that vi ∈
Span {w1, . . . , wn}. Then n ≥ m.

Proposition 2. Let T : V → V be a linear map. Then there exists a a polynomial p(X) :=∑d
k=1 akX

k such that p(T ) :=
∑

k akT
k = 0.

Proof. Fix a basis v1, . . . , vn of V . For each i with 1 ≤ i ≤ n, we can find scalars a0, a1, . . . , an
such that a0v1 + a1Tv+ · · ·+ anT

nv = 0. If we let pi(X) :=
∑

i aiX
i, then pi(T )vi = 0. If we

let p = p1 · · · pn be the product of these polynomials, then p(T )vi = 0 for each i and hence
p(T )v = 0 for all v ∈ V .

Proposition 3. Let T : V → V be linear. Let N(T ) and R(T ) denote the kernel and the range
of T . Then they are invariant under T . If N(T ) ∩R(T ) = {0}, then V = N(T )⊕R(T ).

Proof. A trivial application of the rank-nullity theorem.

Theorem 4. Any linear map on a finite dimensional vector space over an algebraically closed
field has an eigen vector.

Proof. Let T : V → V be one such. By Proposition 2, there exists a polynomial p(X) with
coefficients in the field such that p(T ) = 0. Since the filed is algebraically close, we can write
p(X) = c(X − α1) · · · (X − αk). Let v ∈ V be any nonzero vector. Let i be the least integer
such that c(T − αiI) · · · (X − αiI)v = 0. If i = 1, then v is an eigen vector with eigen value
α1, otherwise, w := (T − αi−1I) · · · (T − α1I)v is an eigen vector with eigen value αi.

Proposition 5. Let λ be an eigenvalue of a linear map T : V → V . Let the generalize
eigensubspace of λ be defined by

V (λ) := {v ∈ V : (T − αI)kv = 0for some k ∈ N}.

Then there exists r ≥ 1 such that V (λ) = N((T − λI)r) and we have

V (λ) = N((T − λI)r) and V = N((T − λI)r)⊕R((T − λI)r).

The summands are invariant under T .
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Proof. We show first that V (λ) is a vector subspace. It is closed under scalar multiplication.
If vi ∈ V (λ) such that (T − λI)kivi = 0, then (T − λI)k(v1 + v2) = 0 for k = max{k1, k2}.
Since V (λ) ⊂ V , it is finite dimensional. If we fix a basis of V (λ), and we take r to be
the maximum of the k’s corresponding to these finite number of elements, it is clear that
V (λ) = N((T − λI)r).

We claim that the intersection of the kernel and the range of T − λI)r is {0}. Let w be
in their intersection. Then there exists v ∈ V such that w = (T − λI)rv. Since w lies in the
kernel of (T − λI)r, it follows that (T − λI)rw = (T − λI)2rv = 0. It follows that v ∈ V (λ),
that is in the kernel of (T − λI)r. But then w = (T − λI)rv = 0. The claim follows. By the
rank-nullity theorem, we have the direct sum decomposition as in the theorem.

Each of the summands is invariant under (T − λI) as well as under λI and hence under
T = (T − λI) + λI.

Theorem 6. Let T : V → V be a linear map on a finite dimensional vector space over an
algebraically closed field. Then V is the direct sum of generalized eigen spaces of T .

Proof. The result follows by induction (on the number of eigenvalues of T ) using the last
proposition.

Definition 7. A linear map T : V → V is said to be nilpotent of index r if T r = 0 but
T r−1 6= 0.

Lemma 8. Let A be nilpotent of index r. Then we have a chain of strict inclusions

N(A) ⊂ N(A2) ⊂ · · · ⊂ N(Ar) = V.

Proof. Inclusions are obvious. By the definition of index there exists v ∈ V such that Ar−1v 6=
0. Then the vector Ar−iv ∈ N(Ai) but not in N(Ai−1).

Definition 9. We say that the vectors v1, . . . , vk is independent of a subspace W ⊂ V if
whenever a linear combination a1v1 + · · ·+ akvk ∈W , it follows that ai = for 1 ≤ i ≤ k.

Theorem 10 (Jordan canonical Form for Nilpotent Maps). Let A : V → V be nilpotent of
index r. Let S ⊂ V be linearly independent of Ar−1. Then

(a) there exist a number m and vectors v1, . . . , vm such that
(i) the nonzero vectors of the form Ajvi, for j ≥ 0 and 1 ≤ i ≤ m from a basis of V and
(ii) S is a subset of this basis.

(b) For 1 ≤ i ≤ m, let ri be the least integer such that Arivi = 0. Let Vi be the subspace
spanned by the linearly independent set {Ajvi : 0 ≤ i ≤ ri − 1}. Then

V = V1 ⊕ · · · ⊕ Vm. (1)

(i) Each Vi is invariant under A and
(ii) A is nilpotent of index ri on Vi.

(c) Let ϕ(i) be the the number of subspaces in the decomposition (1) of dimension at least
i. Then

dimN(Ai)− dim(Ai−1) = ϕ(i).

(d) The number of subspaces in (1) of any given dimension is uniquely determined by A.
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Proof. We prove the statements in (a) by induction on r. When r = 1, we have A = 0. The
result is trivial in this case. Assume that the result holds for r − 1 and consider a nilpotent
map of index r.

Given a subset S linearly independent ofN(Ar−1), extend it a maximal such set w1, . . . , wk.
Then they along with any basis of N(Ar−1) is a basis of V .

We claim that the vectors Awi, 1 ≤ i ≤ k, lie in N(Ar−1) and are linearly independent of
N(Ar−2). For, if a1Aw1 + · · ·+ akAwk ∈ N(Ar−2), then, a1w1 + · · ·+ akwk ∈ N(Ar−1). By
hypothesis on wi, it follows that ai = 0 for each i.

Now, A restricted to N(Ar−1) is nilpotent of degree r − 1. By induction hypothesis,
there are vectors v1, . . . , vm including Awi’s such that the nonzero vectors of the form Ajvi,
1 ≤ i ≤ m form a basis for N(Ar−1). We adjoin the vectors w1, . . . , wk to them.

The rest (b) and (c) follow easily.

Example 11. Let A be nilpotent of degree 5 on a vector space of dimension 22. The bottom
i rows are N(Ai).

V1 V2 V3 V4 V5 V6

v1 v2
Av1 Av2 v3 v4
A2v1 A2v2 Av3 Av4 v5
A3v1 A3v2 A2v3 A2v4 Av5
A4v1 A4v1 A3v3 A3v4 A2v5 v6

We let Jm(λ) denote the Jordan block matrix

λ 0 0 0 . . . 0
1 λ 0 0 . . . 0
0 1 λ 0 . . . 0

0 0
. . .

. . .

0 0 0 1 λ 0
0 0 0 0 1 λ


.

In the decomposition of the theorem, the matrix of A restricted to Vi with respect to the
specified basis, is Jri(0).

Theorem 12. Let T : V → V be a linear map on a finite dimensional vector space over an
algebraically closed field. Then there exists a Jordan basis for T on V so that the matrix
representation A of T with respect to this basis is of the form

A = diag (Jr1(λ1), . . . , Jrk(λk)).

Proof. Immediate from Theorems 6 and 10.

Remark 13. The above proof is valid as long as there exists a polynomial p such that
p(A) = 0 and p can be factored into linear polynomials over the field of definition of the
vector space.
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