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We shall assume that V' is a finite dimensional vector space over an algebraically closed
field. We start with an easy observation.

Lemma 1. Let vy, v9,...,v, be linearly independent in a vector space. Assume that v; €
Span {w1,...,w,}. Thenn > m. O

Proposition 2. Let T: V — V be a linear map. Then there exists a a polynomial p(X) :=
S axX® such that p(T) == 3, axT* = 0.

Proof. Fix a basis v1,...,v, of V. For each ¢ with 1 <1 < n, we can find scalars ag, a1, ..., a,
such that agv1 +a1Tv+- -+ a,T"v = 0. If we let p;(X) := ), a; X*, then p;(T)v; = 0. If we
let p = p1 - pn be the product of these polynomials, then p(T)v; = 0 for each ¢ and hence
p(T)v =0 for allv e V. O

Proposition 3. Let T: V — V be linear. Let N(T') and R(T) denote the kernel and the range
of T. Then they are invariant under T. If N(T) N R(T) = {0}, then V = N(T) & R(T).

Proof. A trivial application of the rank-nullity theorem. O
Theorem 4. Any linear map on a finite dimensional vector space over an algebraically closed

field has an eigen vector.

Proof. Let T: V — V be one such. By Proposition 2, there exists a polynomial p(X) with
coefficients in the field such that p(T") = 0. Since the filed is algebraically close, we can write
p(X) =c(X —ai) - (X —ag). Let v € V be any nonzero vector. Let i be the least integer
such that ¢(T — o) --- (X —a;l)v = 0. If i = 1, then v is an eigen vector with eigen value
aq, otherwise, w := (T'— a;—11)--- (T — a1 I)v is an eigen vector with eigen value ;. O

Proposition 5. Let A be an eigenvalue of a linear map T:V — V. Let the generalize
etgensubspace of A be defined by

V(A :={v eV : (T —al)*v = Ofor some k € N}.
Then there exists r > 1 such that V(\) = N((T — X\)") and we have
V) =N{(T-=X)")and V=N{(T—-X)")® R((T — \I)").

The summands are invariant under T'.



Proof. We show first that V() is a vector subspace. It is closed under scalar multiplication.
If v; € V(A) such that (T — Al)*v; = 0, then (T — A)¥(vy + v2) = 0 for k = max{ky, ko}.
Since V(A) C V, it is finite dimensional. If we fix a basis of V(\), and we take r to be
the maximum of the k’s corresponding to these finite number of elements, it is clear that
V(A)=N{(T —XI)").

We claim that the intersection of the kernel and the range of T'— AI)" is {0}. Let w be
in their intersection. Then there exists v € V such that w = (T'— AI)"v. Since w lies in the
kernel of (T'— M), it follows that (T — M )"w = (T — A )?"v = 0. It follows that v € V(})),
that is in the kernel of (T'— AI)". But then w = (T" — AI)"v = 0. The claim follows. By the
rank-nullity theorem, we have the direct sum decomposition as in the theorem.

Each of the summands is invariant under (7" — AI) as well as under A\l and hence under
T=(T—-M\)+ M. O

Theorem 6. Let T: V — V be a linear map on a finite dimensional vector space over an
algebraically closed field. Then V is the direct sum of generalized eigen spaces of T'.

Proof. The result follows by induction (on the number of eigenvalues of T') using the last
proposition. O

Definition 7. A linear map T7: V — V is said to be nilpotent of index r if T" = 0 but
Tt #£0.

Lemma 8. Let A be nilpotent of index r. Then we have a chain of strict inclusions

N(A)C NAYH C---C NA") =V.

Proof. Inclusions are obvious. By the definition of index there exists v € V such that A" 1v #
0. Then the vector A" "*v € N(A?) but not in N(A*"1). O

Definition 9. We say that the vectors vy,...,v; is independent of a subspace W C V if
whenever a linear combination ajv; + - - - 4+ agvy € W, it follows that a; = for 1 < i < k.

Theorem 10 (Jordan canonical Form for Nilpotent Maps). Let A: V' — V' be nilpotent of
index r. Let S C V be linearly independent of A”'. Then
(a) there exist a number m and vectors vi, ..., vy such that
(i) the nonzero vectors of the form Alv;, for 7 >0 and 1 < i < m from a basis of V and
(ii) S is a subset of this basis.
(b) For 1 < i < m, let r; be the least integer such that A™v; = 0. Let V; be the subspace
spanned by the linearly independent set {AJv; : 0 < i <r; —1}. Then

V=Vi® & Vp (1)

(i) Each V; is invariant under A and
(ii) A is nilpotent of index r; on V;.
(c) Let (i) be the the number of subspaces in the decomposition (1) of dimension at least
i. Then
dim N (AY) — dim(A"Y) = p(4).

(d) The number of subspaces in (1) of any given dimension is uniquely determined by A.



Proof. We prove the statements in (a) by induction on r. When r = 1, we have A = 0. The
result is trivial in this case. Assume that the result holds for » — 1 and consider a nilpotent
map of index r.

Given a subset S linearly independent of N (A" 1), extend it a maximal such set wy, . . . , wy.
Then they along with any basis of N(A"~!) is a basis of V.

We claim that the vectors Aw;, 1 <i <k, lie in N(A""!) and are linearly independent of
N(AT_2). For, if a1 Awy + - -+ + apAwy, € N(AT_Q), then, ajwy + - - + apwy, € N(AT_I). By
hypothesis on w;, it follows that a; = 0 for each i.

Now, A restricted to N(A"~1) is nilpotent of degree » — 1. By induction hypothesis,

there are vectors vy, ..., v, including Aw;’s such that the nonzero vectors of the form AJv;,
1 <i < m form a basis for N(A"~!). We adjoin the vectors wy, ..., wy to them.
The rest (b) and (c) follow easily. O

Example 11. Let A be nilpotent of degree 5 on a vector space of dimension 22. The bottom
i rows are N (AY).
i Vo V3 Vi V5 W

U1 V2
Avy Avg V3 V4
A2 U1 A2 V9 AU3 AU4 (%3
A3U1 A3'U2 A2123 A2U4 AU5
A4U1 A4U1 A3U3 A3U4 A2U5 V6

We let Jp,(A) denote the Jordan block matrix

A0 0 0 ... 0
1 A2 0 0 0
01 Xx 0 0
0 0 . .

00 0 1 X O
00 0 0 1 X

In the decomposition of the theorem, the matrix of A restricted to V; with respect to the
specified basis, is J;, (0).

Theorem 12. Let T: V — V be a linear map on a finite dimensional vector space over an
algebraically closed field. Then there exists a Jordan basis for T on V so that the matriz
representation A of T with respect to this basis is of the form

A = diag (Jm ()‘l)v SRR Jrk ()‘k))

Proof. Immediate from Theorems 6 and 10. O

Remark 13. The above proof is valid as long as there exists a polynomial p such that
p(A) = 0 and p can be factored into linear polynomials over the field of definition of the
vector space.



