
Jordan Canonical Form

S. Kumaresan
School of Math. and Stat.
University of Hyderabad

Hyderabad 500046
kumaresa@gmail.com

Let V be a vector space over C (more generally, over an algebraically closed field). Let
A : V → V be a linear map. The purpose of this article is to give a variety of short, simple and
direct proofs of the existence of a Jordan canonical form for linear maps over an algebraically
closed field. We also include a proof of uniqueness for completeness sake.

Let us start with a very general observation. If A : V → V is linear, then a vector subspace
W ⊂ V is said be A-stable or invariant under A if Aw ∈ W for all w ∈ W . If V = U ⊕W
is a direct sum of A-invariant subspaces and if {u1, . . . , ur} is an ordered basis of U and
{w1, . . . , ws} is an ordered basis of W , then {u1, . . . , ur, w1, . . . , ws} is an ordered basis of V .

With respect to this basis, the matrix representation of A is of the form

(
B 0
0 C

)
where B

(respectively C) is an r × r (respectively s × s) matrix. Thus to find basis of V so that the
matrix representation of A takes a simple form is equivalent to expressing V as a direct sum
of subspaces invariant under A.

Definition 1. A vector subspace W of V is said to be cyclic if there exists a scalar λ, an
integer m ≥ 1 and a nonzero vector v such that (A− λI)mv = 0 but (A− λI)m−1v 6= 0 and
we have

W = Span {v, (A− λI)v, . . . , (A− λI)m−1v}.

We observe that such a subspace is invariant under A. It has dimension m. For, let

m−1∑
j=0

aj(A− λI)jv = 0.

Assume that r is the first integer j such that aj 6= 0. Applying (A− λI)m−1−r to both sides,
we find that ar(A− λI)m−1v = 0. Since (A− λI)m−1v 6= 0, we deduce that ar = 0.

Example 2. If v is a (nonzero) eigen vector with eigenvalue λ, then Span {v} is a cyclic
subspace.

Example 3. If A : C2 → C2 is given by Ae1 = e2 and Ae2 = 0, then C2 = {e1, Ae1} is cyclic.
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Remark 4. Let W be the cyclic subspace as in Def. 1. We find the matrix representation of
A |W with respect to the ordered basis {w1 := v, w2 := (A− λI)v, . . . , wm := (A− λI)m−1v}.

Aw1 = Av = (A− λI)v + λv = λw1 + w2

Aw2 = A ((A− λI)v) = (A− λI)w2 + λw2 = λw2 + w3

...

Awm−1 = A
(
(A− λI)m−2v

)
= (A− λI)wm−1 + λwm−1 = λwm−1 + wm

Awm = A
(
(A− λI)m−1v

)
= (A− λI)wm + λwm = λwm.

Hence the matrix of A is 

λ 0 0 0 . . . 0
1 λ 0 0 . . . 0
0 1 λ 0 . . . 0

0 0
. . .

. . .

0 0 0 1 λ 0
0 0 0 0 1 λ


.

If we work with the ordered basis {v1 := wm, v2 := wm−1, . . . , vm := w1}, the matrix of A is
the standard Jordan block Jm(λ) where

Jm(λ) =



λ 1 0 0 . . . 0
0 λ 1 0 . . . 0

. . .
. . .

. . .

0 0 0 λ 1 0
0 0 0 λ 1
0 0 0 λ


.

A Jordan canonical form of A : V → V is got if we can choose an ordered basis

{v11, . . . , v1n1 , . . . , vk1, . . . , vknk
}

with the following property

Avi1 = λivi1 and A(vij) = λivij + vij−1 if j > 1, 1 ≤ i ≤ k.

We call the ordered set {vi1, . . . , vini} as a string headed by vi1 corresponding to the eigenvalue
λi. The corresponding matrix is then of the form

diag (Jn1(λ1), . . . , Jnk
(λk)).

Thus to prove the existence of the Jordan Canonical form, it is enough to prove that V is
a direct sum of cyclic subspaces. Our first proof uses this observation and is due to I. Gohberg
and S. Goldberg.
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First Proof of the existence of a Jordan Form

Idea of the proof: Assume that A is singular. The proof is by induction on n.
Let F be an n− 1 dimensional subspace containing AV . Then F is A-invariant.
The proof is split into two cases. In the first case, there exists a vector ϕ /∈ F
such that Aϕ = 0. In this case, V = F ⊕ Span {ϕ}. The second case is when no
such ϕ exists. The trick here is to replace one of the cyclic subspaces of F by
a cyclic subspace of A in V whose dimension is larger by one, while keeping the
other cyclic spaces unaffected.

Remark 5. We need the following fact in the proof: Let W = H⊕Span {ϕ,Aϕ, . . . , Am−1ϕ}
with Am−1ϕ 6= 0 and Amϕ = 0. Assume that H is an A-invariant subspace of V and that
AmH = {0}. Given any h ∈ H, we let ψ := ϕ+ h. Then we claim that

W = H ⊕ Span {ψ,Aψ, . . . , Am−1ψ}.

We need only check that the sum is direct. Let
∑m−1

j=0 ajA
jψ ∈ H, say h1. Then

∑m−1
j=0 ajA

jϕ =

h1 −
∑m−1

j=0 ajA
jh ∈ H. This contradicts our assumption that the given sum is direct.

Theorem 6 (Jordan Decomposition Theorem). Let V be a vector space over an algebraically
closed field and A : V → V be linear. Then V can be written as a direct sum of cyclic subspaces
of A.

Proof. We prove the result by induction on the dimension of V . The result is trivial if
dimV = 1. Assume that the result is true for all n− 1 dimensional vector spaces. Let A be
a linear map on an n dimensional vector space. We first prove the result assuming that A is
singular. Thus, the range AV is at most n− 1 dimensional. Let W be any n− 1 dimensional
vector subspace which contains AV . Then W is A-invariant, since AW ⊂ AV ⊂ W . By
induction hypothesis, W is the sum of cyclic subspaces Wj , 1 ≤ j ≤ k. Let

Wj := Span {wj , (A− λjI)wj , . . . , (A− λjI)mj−1wj},

where we assume that (A− λjI)mjwj = 0 but (A− λjI)mj−1wj 6= 0.

We shall assume that Wj are indexed in such a way that mj−1 ≤ mj .

Let ϕ ∈ V \W . We claim that Aϕ is of the form

Aϕ =
∑
j∈S

ajwj +Aw, where w ∈W and S = {j : λj = 0}. (1)

(If S = ∅, then Aϕ = Aw.)

To prove the claim, we note that Aϕ ∈ AV ⊂ W . Hence Aϕ is a linear combination of
vectors of the form (A − λjI)rwj , 0 ≤ r ≤ mj − 1, 1 ≤ j ≤ k. Now for λj = 0, the vectors
Awj , . . . , A

mj−1wj are in AW .

Let λj 6= 0. Then we can use the binomial expansion of (A − λjI)mj in the equation
(A − λjI)mjwj = 0 and conclude that wj is a linear combination of Aqwj for 1 ≤ q ≤ mj .
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(See Remark 7 below for more details.) Thus all the vectors (A − λjI)rwj lie in AW . This
completes the proof of our claim.

Let ψ := ϕ− w where w is as (1). Observe that ψ /∈W . From (1), we have

Aψ =
∑
j∈S

ajwj . (2)

If Aψ = 0, we are through. For, then, Span {ψ} is cyclic and we have V = W ⊕ Span {ψ}.
Suppose that Aψ 6= 0. Let p be the largest of the integers j in (2) for which aj 6= 0. Let
v := (1/ap)ψ. Then

Av = wp +
∑

j∈S,j<p

aj
ap
wj . (3)

Define U := ⊕j∈S,j<pWj . The subspace U is A-invariant. Since mj ≤ mp for j < p, it follows
that Amp(U) = {0}. Thus by the observation made in Remark 5 and (3), it follows that

U ⊕Wp = U ⊕ Span {Av, . . . , Ampv}.

Hence
W = (⊕j 6=pWj)⊕ Span {Av, . . . , Ampv}.

Since v /∈W , we have

V = W ⊕ Span {v} = (⊕j 6=pWj)⊕ Span {v,Av, . . . , Ampv}.

This completes the proof of the theorem under the assumption that A is singular.

Since the filed is algebraically closed, there exists an eigen value α of A on V . The map
A− αI is singular and we can apply the previous result to this map.

Remark 7. Let λ 6= 0. Assume that w ∈ V is such that (A−λI)mw = 0 but (A−λI)m−1w 6= 0
for m ≥ 1. Then, from the binomial expansion, we get

0 = (A− λI)mw = (−λ)mw +
m∑
r=1

(
m

r

)
(−λ)m−rArw,

so that

w = (−1)m+1λ−m
m∑
r=1

(
m

r

)
(−λ)m−rArw.

In particular, w is a linear combination of Arw, 1 ≤ r ≤ m.

We now show how the above proof gives us an algorithm to find the Jordan decomposition.

Example 8. Consider the matrix 
0 1 1 0 1
0 0 1 1 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 .
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Then Ae1 = 0, Ae2 = e1, Ae3 = e1 + e2 = Ae5, Ae4 = e2. The range of A is Span {e1, e2}.
We take W = Span {e1, e2, e3, e4}. Clearly, {e4, e2 = Ae4, e1 = A2e4} is a cyclic subspace of
W . To write it as a direct sum of cyclic subspaces, we select e3 which is not in the cyclic
subspace. We have

Ae3 = e2 + e1 = Ae4 +A2e4 = A(e4 + e2).

Hence we consider e3 − e4 − e2. Then A(e3 − e4 − e2) = 0. It follows that

W = Span {e4, Ae4, A2e4} ⊕ Span {e3 − e4 − e2}.

We now take e5 /∈W . Look at Ae5 = e2 + e1 = A(e4 + e2). So, we take e5 − e2 − e4 and find
that A(e5 − e2 − e4) = 0. Thus

C5 = Span {e4, Ae4, A2e4} ⊕ Span {e3 − e2 − e4} ⊕ Span {e5 − e2 − e4}

is a direct sum of cyclic subspaces.

Example 9. Let

A =


0 1 0 0 a
0 0 0 0 b
0 0 0 1 c
0 0 0 0 d
0 0 0 0 0

 .

Then Ae2 = e1, Ae1 = 0, Ae4 = e3, Ae3 = 0. We take

W = Span {e1, e2, e3, e4} = Span {e2, Ae2} ⊕ Span {e4, Ae4}.

Now e5 /∈W . We have

Ae5 = ae1 + be2 + ce3 + de4 = (be2 + de4) +A(ae2 + ce4).

Case (1): If d 6= 0, we take v = (e5 − ae2 − ce4)/d. Then Av = e4 + (b/d)e2, A
2v =

e3 + (b/d)e1 so that
C5 = Span {e2, Ae2} ⊕ Span {v,Av,A2v}.

Case (2): If d = 0 but b 6= 0, we take v = (e5 − ae2 − ce4)/b. Then Av = e2, A
2v = Ae2 = e1

and hence
C5 = Span {e4, Ae4} ⊕ Span {v,Av,A2v}.

Case (3): Finally, if d = b = 0, then take v = e5 − ae2 − ce4. Then Av = 0 so that

C5 = Span {e2, Ae2} ⊕ Span {e4, Ae4} ⊕ Span {v}.

Example 10. Consider the matrixB :=

 0 4 2
−3 8 3

4 −8 −2

. The only eigen value ofB is λ = 2.

Let A := B − 2I. The range R(A) := Span {(2, 3,−4)}. We let W := Span {(2, 3,−4), e2}.
We let ϕ := e1 /∈ W . Since Aϕ = −(2, 3,−4), we let v1 := −e1, v2 := (2, 3,−4), v3 = e1 + e3.
Then

Av1 = v2, Av2 = 0, Av3 = 0,
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so that the Jordan canonical form of A is

0 0 0
1 0 0
0 0 0

. Hence the Jordan canonical form of

the given matrix B is

2 0 0
1 2 0
0 0 2

.

Second Proof of the existence of a Jordan Form

The following proof is taken from my article “Structure Theorems for Linear Maps.” I include
it here for the sake of comparison.

Theorem 11 (Jordan Basis for Nilpotent Maps). Let A : V → V be a nilpotent linear map.
Assume that k is the smallest positive integer such that Ak = 0. Let S ⊂ V be any linearly
independent set such that Span S ∩ Ker Ak−1 = {0}. Then S can be extended to a Jordan
basis for A.

Proof. We prove the result by induction on k. For k = 1, the result is obvious.

Assume that k ≥ 2. We extend S to a linearly independent subset S′ such that V =
Span S′ ⊕ Ker Ak−1. We observe that A is one-one on Span S′. For, if Av = 0 for some
v ∈ Span S′, then v ∈ Ker A ⊂ Ker Ak−1. Hence v = 0 thanks to our hypothesis on Span S′.
It follows that AS′ is a linearly independent subset of Ker Ak−1.

We claim that A(Span S′) ∩Ker Ak−2 = {0}. For, if w = Av for some v ∈ Span S′, then

w ∈ Ker Ak−2 ⇐⇒ Ak−1v = 0⇐⇒ v ∈ Span S′ ∩Ker Ak−1 = {0}.

We invoke the induction hypothesis to the restriction of A on the invariant subspace
Ker Ak−1. It follows that AS′ can be extended to a Jordan basis J ′ for A on Ker Ak−1. We
combine S′ with J ′ in such a way that each v ∈ S′ comes after Av. The result is easily seen
to be a Jordan basis of V for A.

Example 12. Consider the matrix of Example 8. Then

Ker A = Span {e1, e2 + e4 − e3, e3 − e5}
Ker A2 = Span {e1, e2, e2 + e4 − e3, e3 − e5}

We take S′ = {e4}. Then a Jordan basis for A is given by

{v1 = e1, v2 = e2, v3 = e4, v4 = e2 + e4 − e3, v5 = e3 − e5}

and the corresponding Jordan canonical form is
(
J3(0), J1(0), J1(0)

)
, using a standard nota-

tion.

Exercise. Carry out a similar exercise for the matrix in Example 9.
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Remark 13. Using the factorization of the characteristic (or minimal) polynomial of A, we
can decompose V into a direct sum of generalized eigenspaces. The restriction of the map
A − λI will be nilpotent on the generalized eigenspace corresponding to λ. Using this fact,
one can derive the Jordan basis theorem for any linear map. For details, consult my article
referred to above or any standard book on linear algebra. One can also derive the Jordan
canonical form for general linear maps as follows.

Theorem 14. Let T : V → V be a linear map on a finite dimensional vector space over an
algebraically closed field. Then there exists a Jordan basis for T on V so that the matrix
representation A of T with respect to this basis is of the form

A = diag (Jk1(λ1), . . . , Jkr(λr)).

Proof. We prove the result by induction on the dimension of V . If dimV = 1, the result is
obvious. We assume that n ≥ 2. Let λ be an eigen value of T . Let S := T − λI.

Consider the chain of vector subspaces Ker S ⊆ Ker S2 ⊆ · · · . This is a nondecreasing
chain and since dimV is finite, (dim Ker Sk) cannot be a strictly increasing sequence of
integers. Assume that m is the least positive integer such that Ker Sm = Ker Sm+1.

We claim that Ker Sm = Ker Sm+i for i ∈ N. We prove this by induction on i. The claim
is true for i = 1 by our assumption on m. Assume the result for i. Let v ∈ Ker Sm+i+1.
Then Sv ∈ Ker Sm+i = Ker Sm. It follows that v ∈ Ker Sm+1 = Ker Sm.

We now show that V = Ker Sm ⊕ ImSm. First of all we observe that Ker Sm ∩ ImSm =
(0). For, if v ∈ ImSm, say, v = Smw, then v ∈ Ker Sm iff Smv = S2mw = 0. But then
w ∈ Ker S2m = Ker Sm. We conclude that v = Smw = 0. By the rank-nullity theorem
dimV = dim Ker Sm + dim ImSm. As a consequence, Ker Sm + ImSm = V and hence
V = Ker Sm ⊕ ImSm.

Note that each of the summands Ker Sm and ImSm are invariant under S and that S is
nilpotent on Ker Sm. If V = Ker Sm, then S is nilpotent on V and the result follows form
Theorem 11. If Ker Sm is a proper subspace of V , then dim Ker Sm ≥ 1, since λ is an eigen
value of T . Thus Ker Sm and ImSm are both invariant under S and of dimension strictly
less than that of V . By induction hypothesis, there exist Jordan basis B1 for Ker Sm and B2
for ImSm. Concatenating them gives a Jordan basis for S (and hence for T ) on V . (That
is, let B = B1 ∪ B2 in such a way that the elements are listed in such a way that the order is
preserved among elements belonging to the same set and any element of B2 follows after all
elements of B1.)

Remark 15. Let A : V → V be linear. Letm be the least positive integer such that Ker Am =
Ker Am+1. Then we always have the direct sum decomposition V = Ker Am ⊕ ImAm. Note
that A is nilpotent when restricted to Ker Am and is invertible when restricted to ImAm,
since Ker A ⊂ Ker Am.

Such a decomposition is unique, that is, if V = K ⊕ L such that K and L are invariant
under A, A is nilpotent on K and invertible on L, then K = Ker Am and L = ImAm. For,
K ⊂ ∪r Ker Ar = Ker Am. Hence ImAm = AmV = AmL = L, since A is invertible on L. It
follows that dimK = dim Ker Am so that K = Ker Am.
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Third Proof of the existence of a Jordan Form

We now give a proof of the existence of Jordan canonical form following a method of Filippov.
To bring out the simplicity of the proof, we establish the result in the case of a nilpotent map.
We later deal with the general case.

Theorem 16 (Jordan canonical form for nilpotent operators). Let A : V → V be a nilpotent
operator on a finite dimensional vector space over a field F . Assume that the all the roots of
the characteristic polynomial lie in F . Then there exists an A-Jordan basis of V .

Proof. We prove this result by induction on the dimension of V . If dimV = 1, then A = 0
and hence any nonzero element is a Jordan basis of V . The result is also true if A = 0 and
whatever be the dimension of V . So, we now assume that the result is true for all nonzero
nilpotent operators on any finite dimensional vector space with dimension less than n where
n > 1.

Let V be of dimension n and A : V → V be nonzero and nilpotent. Since Ker A 6= {0},
dim ImA < n. It is also invariant under A. Thus the restriction of A to W = ImA, which
we denote by A again, is a nilpotent operator on W . We can therefore apply the induction
hypothesis. We then get a Jordan basis of W , say, J = J1∪ · · ·∪Jk where each Ji is a Jordan
string:

Ji = {vi1, . . . , vini} with Avi1 = 0 and Avij = vij−1 for 2 ≤ j ≤ ni.

We have, of course, n1 + · · ·+ nk = dim ImA.

Suggestion: The reader may assume that there is only one Jordan string during the first
reading of the proof below. He may also would like to understand the proof in a special
case, say, A : R5 → R5 given by

Ae1 = 0 = Ae2, Ae3 = e4, Ae4 = e5, Ae5 = 0.

By very assumption that J is a basis of ImA, the set {vi1 : 1 ≤ i ≤ k} (of the first
elements of the Jordan strings Ji) is a linearly independent subset of V and it is a subset
of Ker A. We extend this set to a basis of Ker A, say, {v11, . . . , vk1, z1, . . . , zr}. Each last
element vini ∈ Ji lies in ImA and hence we can find vini+1 ∈ V such that Avini+1 = vini . We
now let Bi := Ji ∪ {vini+1} and B := ∪ki=1Bi ∪ {z1, . . . , zr}. Using rank-nullity theorem, we
see that |B| = n. We claim that B is linearly independent subset of V . Let

(a11v11 + · · ·+ a1n1+1v1n1+1)+ · · ·+(ak1vk1 + · · ·+ a1nk+1v1nk+1)+b1z1+ · · ·+brzr = 0. (4)

We apply A to both sides. Since zj , vi1 ∈ Ker A for 1 ≤ j ≤ r and 1 ≤ i ≤ k, we arrive at the
following equation:

A ([a12v12 + · · ·+ a1n1+1v1n1+1] + · · ·+ [ak2vk2 + · · ·+ aknk+1v1nk+1]) = 0.

Since Avij = vij−1 for 1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1, we get

(a12v11 + · · ·+ a1n1+1v1n1) + · · ·+ (ak2vk1 + · · ·+ aknk+1v1nk
) = 0.
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Since vij ’s that appear in the above equation are linearly independent, we deduce that aij = 0
for 1 ≤ i ≤ k and 2 ≤ j ≤ ni + 1. Thus (4) becomes

a11v11 + · · ·+ ak1vk1 + b1z1 + · · ·+ brzr = 0.

Th vectors that appear in the equation above form a basis of Ker A and hence we deduce all
the coefficients in the equation are zero. Thus, we have show that all the coefficients in (4)
are zero and hence B is linearly independent.

We now prove the general case adapting Flippov’s argument above.

Proof. The proof is by induction on dimV . The result is true for when dimV = 1. Assume the
result for any linear map on a vector space of dimension less than n. Assume that A : V → V
be linear and that dimV = n. We shall first prove the result assuming that A is singular and
extend it to all linear maps.

Let W := ImA. Since A is singular, dimW < n. Since W is invariant under A, we may
apply the induction hypothesis to the restriction of A to W . We then get a Jordan basis for
A |W . Let {λ1, . . . , λm} be the eigen values of A |W . Let

{v11, v12, . . . , v1n1 , . . . , vm1, vm2, . . . , vmnm}

be a Jordan basis of A |W . Recall that this means that

Avi1 = λivi1 and Avij = λivij + vij−1 for j > 1.

Without loss of generality, we shall assume that the eigen values are indexed in such a way
that λi = 0 for 1 ≤ i ≤ p and λi 6= 0 for i > p.

The proof is quite simple and the idea on which the proof is based is given below. We hope
that the reader is not put off by the notation.

Idea of the proof: The set {vi1 : 1 ≤ i ≤ p} is a basis of Ker (A |W ). Extend this
to a basis of Ker A by adjoining {u1, . . . , us}. Let wi ∈ V be such that Awi = vini .
Then

{u1, . . . , us, v11, v12, . . . , v1n1 , w1, . . . , vm1, vm2, . . . , vmnm , wm}

is a Jordan basis for A on V .

Since Avi1 = 0 for 1 ≤ i ≤ p, we see that vi1 ∈ Ker (A |W ) ⊂ Ker A. We claim that

Ker (A |W ) = Span {v11, . . . , vp1}. (5)

To prove the claim, let

w :=
m∑
i=1

ni∑
j=1

αijvij =

p∑
i=1

ni∑
j=1

aijvij +

m∑
i=p+1

ni∑
j=1

bijvij ∈ Ker (A |W ).
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We need to show that the only possible nonzero coefficients in the above sum are ai1’s. To
establish this, we compute Aw. We get

0 =

p∑
i=1

ni∑
j=2

aijvij−1 +
m∑

i=p+1

λibi1vi1 +
m∑

i=p+1

ni∑
j=2

(bijvij−1 + λibijvij) .

Since vij ’s are linearly independent, if any of them occurs only once in the above sum, then
its coefficient must be zero. Hence, the coefficient aij = 0 for j ≥ 2, as vij−1 for 1 ≤ i ≤ p
appears in the sum of Aw exactly once. For similar reasons, λibini = 0, for p + 1 ≤ i ≤ m.
Since λi 6= 0 for i > p, we deduce that bini = 0 for each p+ 1 ≤ i ≤ m. Let us now fix i and
examine the summand corresponding to this i.

0 = λibi1vi1 + (bi2vi1 + λibi2vi2) + · · ·+ (binivini−1 + λibinivini) .

For brevity sake we ignore the index i and let k = ni in the expression above and rewrite it
as

0 = λb1v1 + (b2v1 + λb2v2) + · · ·+ (bkvk−1 + λbkvk). (6)

Since vk appears only once in the above linear combination on the right hand side, we deduce
that λbk = 0. Since λ 6= 0, it follows that bk = 0. Using this in (6), we get a similar equation
with k replaced by k − 1:

0 = λb1v1 + (b2v1 + λb2v2) + · · ·+ (bk−1vk−2 + λbk−1vk−1).

Since vk−1 appears only once, as earlier, we conclude that bk−1 = 0 and so on. We thus find
bj = 0 for 1 ≤ j ≤ k. Going back to the general case, what we have shown is that bij = 0 for
all p+ 1 ≤ i ≤ m and 1 ≤ j ≤ ni. This completes the proof of the claim (5).

We extend the linearly independent set {vi1 : 1 ≤ i ≤ p} to a basis {v11, . . . , vp1, u1, . . . , us}
of Ker A. Since vini ∈ ImA for 1 ≤ i ≤ p, we can find vi ∈ V such that Avi = vini . We claim
that

B := {u1, . . . , us, v11, . . . , v1n1 , v1, . . . , vp1, . . . , vpnp , v(p+1)1, . . . , v(p+1)np
, . . . , vm1, . . . , vmnm , vm}

is a basis of V . We need only show that B is linearly independent. (Why?)

To prove this, let us assume that

0 =

p∑
i=1

ni∑
j=1

aijvij +
m∑

i=p+1

ni∑
j=1

aijvij +

p∑
r=1

brvr +
s∑

k=1

ckuk. (7)

Since uk’s are in Ker A and are therefore linearly independent of the vectors in ImA. It
follows that ck = 0 for all 1 ≤ k ≤ s. Thus (7) becomes

0 =

p∑
i=1

ni∑
j=1

aijvij +

m∑
i=p+1

ni∑
j=1

aijvij +

p∑
r=1

brvr. (8)

Applying A to both sides of (8), we get

0 =

p∑
i=1

ni∑
j=2

aijvij−1 +

m∑
i=p+1

ai1λivi1 +

m∑
i=p+1

ni∑
j=2

aij (λivij + vij−1) +

p∑
r=1

brvrnr . (9)
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The only terms that involve vrnr for 1 ≤ r ≤ p have coefficients br and hence we conclude
that br = 0, 1 ≤ r ≤ p. Using this information in (8), we get

0 =

p∑
i=1

ni∑
j=1

aijvij +

m∑
i=p+1

ni∑
j=1

aijvij . (10)

The right hand side involves vij ’s only once and hence their coefficients bij = 0 for all i, j.
This establishes the linear independence of B.

Each of uj contributes to J1(0). Each of the string {vi1, . . . , vini , vi}, 1 ≤ i ≤ p, contributes
to Jni(0). Each of the strings {vi1, . . . , vini}, p+ 1 ≤ i ≤ m, contributes to Jni(λi).

Remark 17. The following are some of the important features of the Jordan canonical form
of a linear map and they are very useful in determining the Jordan canonical form.

(i) The sum of the sizes of the blocks involving a fixed eigenvalue equals the algebraic
multiplicity of the eigenvalue, that is, the multiplicity of the the eigenvalue as a root of the
characteristic polynomial.

(ii) The number of blocks involving an eigenvalue equals its geometric multiplicity, that is,
the dimension of the corresponding eigenspace .

(iii) The largest block involving an eigenvalue equals the multiplicity of the eigenvalue as a
root of the minimal polynomial.

Let J be a Jordan canonical form of A. Then A and J are similar. Hence their charac-
teristic polynomials are the same. Statement (i) follows if we observe that the eigenvalues of
a Jordan block Jk(λ) is λ with algebraic multiplicity k.

Statement (ii) follows from the observation that the eigenvalue λ of similar matrices (or
linear maps) have the same geometric multiplicity and the fact that any Jordan block Jk(λ)
has one dimensional eigenspace.

Statement (iii) follows from the observations: (a) the map T := Jk(λ)−λIk×k is nilpotent
with index k, that is, T k = 0 but T k−1 6= 0 and (b) if J = diag (Jn1(λ1), . . . , Jnk

(λk)), then
its minimal polynomial is the product of the minimal polynomials of Jni(λi).

Theorem 18 (Uniqueness of the Jordan Form). The Jordan form is unique apart from a
permutation of the Jordan blocks.

Proof. Let us assume that A is similar to two Jordan forms J1 and J2. Then there is some
eigenvalue λ of A such that the corresponding blocks in J1 and J2 differ. As observed in the
above remark (Property (ii), more precisely), the number of blocks corresponding to λ in J1
and J2 will be the geometric multiplicity, say, k of λ. Let m1 ≥ m2 ≥ · · · ≥ mk be the sizes
of the blocks of J1 corresponding to the eigenvalue λ. Let n1 ≥ n2 ≥ · · · ≥ nk be the sizes
of the blocks in J2. It follows that there exists some 1 ≤ j ≤ k such that m − i = ni for
all 1 ≤ i ≤ j − 1 but mj 6= nj . Assume without loss of generality that nj > mj . But then
(J1 − λI)mj = 0 but (J2 − λI)mj 6= 0. This is absurd since J1 and J2 are similar.

Example 19. Consider the matrix in Example 8. It is easy to see that it is a nilpotent
matrix of index 3 so that its minimal polynomial is X3 while the characteristic polynomial
is X5. It is equally easy to see that e1, e2 + e4 − e3 and e2 + e4 − e5 span the 0-eigen space.
Hence the Jordan form must be diag (J3(0), J1(0), J1(0)) = diag (J3(0), 0, 0).
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Example 20. We wish to find the Jordan form of the matrix

A =


−2 5 1 0
−2 4 1 0
−1 2 1 0
−1 2 0 1

 .

The characteristic polynomial of A is (X − 1)4. The rank of the matrix

A− I4×4 =


−3 5 1 0
−2 3 1 0
−1 2 0 0
−1 2 0 0


is 2. Hence the geometric multiplicity of the eigenvalue λ = 1 is 2. Hence there must
be two Jordan blocks in the Jordan form of A. The Jordan form of A is therefore either
diag (J3(1), J1(1)) or diag (J2(1), J2(1)). The matrix (A − I)2 can be seen to be nonzero.
Hence the minimal polynomial of A cannot be (X − 1)2. Thus the Jordan form of A is
diag (J3(1), J1(1)).

Example 21. Let us consider 0 1 2
0 0 1
0 0 0

 .

It is easy to show that the minimal polynomial of A is X3 and the geometric multiplicity of
the eigenvalue λ = 0 is 1. Hence the Jordan form of A is J3(0).

Example 22. We show that the Jordan form of A =


0 1 0 1
0 1 0 0
−1 1 1 1
−1 1 0 2

 is diag (J2(1), 1, 1).

We expand the det(A− λI) by the third column and then by the second row to see that the
characteristic polynomial is (X − 1)4. Its is easy to see that the rank of A− 1 · I is 1. Hence
the geometric multiplicity of λ = 1 is three. The claim follows form these observations.

Example 23. Consider A :=


−2 0 −1 1

0 −2 1 0
0 0 −2 0
0 0 0 −2

. Then λ = −2 is the eigenvalue of A

with algebraic multiplicity 4. It is easily seen that the rank of B := A + 2I is 2. Thus the
Jordan form of B is either diag (J2(0), J2(0)) or diag (J3(0), 0). Since B2 = 0, the first case
occurs. Hence the Jordan form of A is diag (J2(−2), J2(−2)).

Ex. 24. The characteristic polynomial of A is (X − 1)3(X − 2)2 and its minimal polynomial
is (X − 1)2(X − 2). What is its Jordan form?

Ex. 25. The characteristic polynomial of A is (X − 1)3(X − 2)2. Write down all possible
Jordan forms of A.

Ex. 26. Find all possible Jordan forms of an 8× 8 matrix whose characteristic polynomial is
(X − 1)4(X − 2)4 and the minimal polynomial (X − 1)2(X − 2)2 if the geometric multiplicity
of the eigenvalue λ = 1 is three.
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Ex. 27. Show that any square matrix A is similar to its transpose. Hint: If A is similar to
J what is AT similar to? Also, see Remark 4.

Ex. 28. Two triangulable matrices are similar iff they have the ‘same’ Jordan forms.

Ex. 29 (S + N decomposition). Given A : V → V , there exist linear maps S and N with
the following properties: (i) A = S + N , (ii) S is diagonalizable and N is nilpotent, (iii)
NS = SN .

Ex. 30. Consider the two matrices

A =


1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 and B =


1 1 0 0
0 1 0 0
0 0 1 1
0 0 0 1

 .

Show that their characteristic polynomial is (X−1)4 and the minimal polynomial is (X−1)2,
but they do not have the same Jordan form. (Question: What are the Jordan forms of the
given matrices?) Thus for two matrices to be similar it is necessary but not sufficient that
they have the same characteristic and the same minimal polynomial.

Ex. 31. Show that if A ∈M(n,C) is such that An = I, then A is a diagonalizable.

Ex. 32. Prove that if λ1, λ2, . . . , λn are the eigenvalues of A and if p(X) is a polynomial,
then p(λi), 1 ≤ i ≤ n, are the eigenvalues of p(A).

Ex. 33. If A :=

(
1 1
−1 3

)
show that A50 = 250

(
−24 25
−25 26

)
.
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