Functions of Bounded Variation

S. Kumaresan School of Math. & Stat. University of Hyderabad Hyderabad 500 046 kumaresa@gmail.com

The starting point for the study of functions of bounded variation is the desire to define the length of a curve. Let $\gamma : [a, b] \to \mathbb{R}^N$ be a continuous function. We call such a function as a curve in \mathbb{R}^N . If we write $x(t) := \gamma(t) = (x_1(t), \ldots, x_N(t))$, then x(t) may be considered as the position vector of a particle at the instant t. We wish to "compute" the length of the curve γ . Since we know how to compute the length of a line segment, we approximate the length of γ by the length of a polygonal path which approximates γ .

Let $P := \{a = t_0 < t_1 < \cdots < t_n = b\}$ be a partition of [a, b]. Then we have a polygonal path which is built out of line segments joining $x(t_{j-1})$ to $x(t_j)$. Its length is $\sum_{j=1}^{n} ||x(t_j) - x(t_{j-1})||$. We shall denote this length by $L(\gamma, P)$. Our intuition says that if we keep refining the partition, we shall get better approximation to the length of γ . This suggests that we define

Length of
$$\gamma \equiv L(\gamma) := \text{lub } \{L(\gamma, P) : P \text{ is a partition of } [a, b]\}.$$

It may happen that $L(\gamma)$ does not exist in \mathbb{R} . If $L(\gamma)$ exists, we say that the curve γ is rectifiable and call $L(\gamma)$ as its length.

Let us keep the notation as above. Fix $1 \le i \le N$. Note that $|x_i(t)| \le ||x(t)||$. Hence it follows that $L(x_i, P) := \sum_j |x_i(t_j) - x_i(t_{j-1})|| \le \sum_j ||x(t_j) - x(t_{j-1})||$. Hence, if we set $L(x_i) := \text{lub } \{L(x_i, P) : P \text{ is a partition of } [a, b]\}$, then $L(x_i) \le L(\gamma)$. Thus if γ is rectifiable, then $L(x_i)$ is finite for each *i*.

Conversely, if each $L(x_i)$ is finite, then γ is rectifiable. We defer the proof of this statement towards the end of this article. We also show (at the end) that if γ is continuous differentiable, then γ is rectifiable and that $L(\gamma) = \int_a^b \|\gamma'(t)\| dt$.

Thus it behaves us to study the special case of real valued functions f on [a, b] and discuss the so-called length L(f).

Definition 1. Let $f: [a,b] \to \mathbb{R}$ be given. Let $P := \{a = x_0, x_1, \dots, x_n = b\}$ be a partition of [a,b]. The variation of f over [a,b] with respect to the partition P is defined by

$$V(f, [a, b], P) := \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|.$$

If the interval [a, b] is understood, we simplify the notation as V(f, P).

We insert a point $x \in (x_{j-1}, x_j)$ to form a new partition $Q = \{x_0, \ldots, x_{j-1}, x, x_j, \ldots, x_n\}$. In the sum for V(f, P) we replace the term $|f(x_j - f(x_{j-1})|)| = |f(x_j - f(x)| + |f(x_j - f(x)|)|$. This shows that $V(f, P) \leq V(f, Q)$.

This leads us to conclude that $V(f, P) \leq V(f, Q)$ if Q is a refinement of P.

Definition 2. The variation f on [a, b] is defined by

$$V(f, [a, b]) := \text{lub } \{V(f, [a, b], P) : P \text{ is a partition of } [a, b]\}.$$

We say that f is of bounded variation on [a, b] if V(f, [a, b]) is finite.

Remark 3. If *f* is of bounded variation on [a, b], then *f* is bounded on [a, b]. Let $x \in [a, b]$ and consider the partition $P := \{a, x, b\}$. Then we have

$$|f(a) - f(x)| \le |f(x) - f(a)| + |f(b) - f(x)| = V(f, P) \le V(f, [a, b]).$$

By triangle inequality we obtain

$$|f(x)| = |f(x) - f(a) + f(a)| \le |f(x) - f(a)| + |f(a)| \le V(f, [a, b]) + |f(a)|.$$

Example 4. Any monotone function $f: [a, b] \to \mathbb{R}$ is of bounded variation and we have $V_a^b(f) = |f(b) - f(a)|$. Assume that f is increasing. Observe that $|f(x_j) - f(x_{j-1})| = f(x_j) - f(x_{j-1})|$. Hence the sum V(f, [a, b], P) is telescopic sum.

$$\sum_{j} |f(x_j) - f(x_{j-1})| = \sum_{j} f(x_j) - f(x_{j-1}) = f(b) - f(a).$$

Example 5. Let $f: [a,b] \to \mathbb{R}$ be Lipschitz, say, $|f(x) - f(y)| \le L |x - y|$. Then f is of bounded variation on [a,b]. Observe that, for any partition, we have

$$\sum_{j} |f(x_j) - f(x_{j-1})| \le \sum_{j} L(x_j - x_{j-1}) = L(b - a).$$

Example 6. Let $f: [a, b] \to \mathbb{R}$ be continuously differentiable (that is, f'(x) exists on [a, b] and f' is continuous on [a, b]). Then f is of bounded variation.

Since f' is continuous on [a, b], there exists M > 0 such that $|f'(x)| \le M$. For, $x, y \in [a, b]$, mean value theorem tells us that there exists z between x and y such that f(x) - f(y) = f'(z)(x-y). It follows that $|f(x) - f(y)| \le M |x-y|$. Thus, f is Lipschitz. The result follows from the last example.

Example 7. We now give an example of a bounded function which is not of bounded variation. Let $f(x) = \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ for $x \in [0, 1]$. Let $x_0 = 0$ and $x_j = \frac{2}{(n-j)\pi}$ for 0 < j < n. We then have

$$\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| = 2n.$$

Hence *F* is not of bounded variation.

Example 8. The function $f(x) = x \sin(1/x)$ for $0 < x \le 2/\pi$ and f(0) = 0 is continuous, bounded but is not of bounded variation. (Draw the graph of this function to see why.)

Let

$$x_0 = 0 < x_1 = \frac{2}{(2n+1)\pi}, < x_2 = \frac{2}{(2n)\pi} < x_3 = \frac{2}{(2n1)\pi} \cdots < x_{2n} = \frac{2}{2\pi} < x_{2n+1} = \frac{2}{\pi}$$

be a partition of the domain. Then we have

$$\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| = \frac{2}{\pi} + \frac{2}{2\pi} + \frac{2}{3\pi} + \dots + \frac{2}{(2n+1)\pi}$$
$$= \frac{2}{\pi} \left(\sum_{k=1}^{2n+1} \frac{1}{k} \right).$$

Since the harmonic series $\sum_k \frac{1}{k}$ is divergent, it follows that the function is not of bounded variation.

Proposition 9. If f, g are of bounded variation on [a, b] so are f + g and f - g.

Proof. Observe that we have

$$\sum_{j=1}^{n} |f(x_j) \pm g(x_j) - [f(x_{j-1}) \pm g(x_{j-1})]| \le \sum_j |f(x_j) - f(x_{j-1})| + \sum_j |g(x_j) - g(x_{j-1})| \le V(f, [a, b]) + V(g, [a, b]).$$

Definition 10. Total variation of $f: [a, b] \to \mathbb{R}$, a function of bounded variation is the function F defined as follows:

$$F(x) := V(f, [a, x]) \equiv \text{lub } \{V(f, [a, x], P): \text{ where } P \text{ is a partition of } [a, x]\}.$$

Theorem 11. Let $f: [a,b] \to \mathbb{R}$ be of bounded variation and F its total variation. Then (i) $|f(x) - f(y)| \le |F(x) - F(y)|$ for $a \le x < y \le b$. (ii) F and F - f are increasing on [a,b] and (iii) $V_a^b(f) \le V_a^b(F)$.

Proof. The idea is very simple. If x < y, then any partition $P = \{x_0, \ldots, x_n = x\}$ of [a, x] gives rise to a partition Q of [a, y] in a natural way: $Q = \{a = x_0, \ldots, x_n = x, y\}$. Hence we obtain

$$\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| \le \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| + |f(y) - f(x)| \le F(y).$$

If we take the LUB of this inequality over all the partitions of [a, x] we obtain

$$F(x) \le F(x) + |f(y) - f(x)| \le F(y).$$

(i) follows from this.

If $\emptyset \neq A \subset B \subset \mathbb{R}$, then we know lub $A \leq \text{lub } B$. Given any partition P of [a, x], let Q denote the partition of [a, y] as in (i). Then we have $V(f, [a, x], P) \leq V(f, [a, y], Q)$. If we take the LUB of this inequality over all the partitions of [a, x], we get $F(x) \leq \text{lub } \{V(f, [a, y], Q)\} \leq F(y)$. Hence it follows that F is increasing on [a, b].

To show that F - f is increasing, we use the inequality of (i):

$$f(y) - f(x) \le |f(y) - f(x)| \le F(y) - f(x).$$

Therefore, $F(x) - f(x) \le F(y) - f(y)$. Thus (ii) is proved.

Let P be a partition of [a, b]. Using (i), we obtain

$$\sum_{j} |f(x_j) - f(x_{j-1})| \le \sum_{j} |F(x_j) - F(x_{j-1})| \le V(F, [a, b]).$$

If we now take the LUB of this inequality over all partitions of [a, b], we obtain $V(f, [a, b]) \leq V(F, [a, b])$.

Theorem 12 (Jordan). Let $f: [a,b] \to \mathbb{R}$. Then f is of bounded variation iff there exist increasing functions F and G such that f = F - G.

Proof. Take G = F - f where F is the total variation of f.

Theorem 13. Let $f: [a, b] \to \mathbb{R}^n$ be C^1 . Then we have

$$L(f) := V(f, [a, b]) = \int_{a}^{b} \left\| f'(t) \right\| dt.$$

Proof. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of [a, b]. By the fundamental theorem of calculus, we have

$$\|f(x_j) - f(x_{j-1})\| = \left\| \int_{x_j-1}^{x_j} f'(t) \, dt \right\| \le \int_{x_j-1}^{x_j} \|f'(t)\| \, dt.$$

Summing this inequality over j we obtain

$$V(f, [a, b], P) \equiv \sum_{j} \|f(x_{j}) - f(x_{j-1})\| \le \int_{a}^{b} \|f'(t)\| dt.$$

Taking the LUB over all partitions, we get $V(f, [a, b]) \leq \int_a^b \|f'(t)\| dt$.

To get the reverse inequality, let $\varepsilon > 0$ be given. Since f' is continuous on [a, b], it is uniformly continuous on [a, b]. Hence there exists $\delta > 0$ such that for $s, t \in [a, b]$ with $|s - t| < \delta$, we have $||f'(s) - f'(t)|| < \varepsilon$. We subdivide [a, b] into N subintervals of equal length (b-a)/N in such a way that $(b-a)/N < \delta$. Let $P = \{x_0, x_1, \ldots, x_N\}$ be the partition. Observe that for $t \in [x_{j-1}, x_j]$, we have $||f'(t) - f(x_j)|| < \varepsilon$. Hence for such t, we have

$$\left\|f'(t)\right\| \le \left\|f'(x_j)\right\| + \varepsilon. \tag{1}$$

We integrate this inequality on $[x_{j-1}, x_j]$ and obtain

$$\begin{split} \int_{x_{j-1}}^{x_j} \|f'(t)\| dt &\leq \int_{x_{j-1}}^{x_j} \|f'(x_j)\| dt + \varepsilon(x_i - x_{j-1}) \\ &= \|f'(x_j)\| (x_j - x_{j-1}) + \varepsilon(x_i - x_{j-1}) \\ &= \|\int_{x_{j-1}}^{x_j} \left[f'(t) + f'(x_j) - f'(t)\right] dt \| + \varepsilon(x_i - x_{j-1}) \\ &= \|\int_{x_{j-1}}^{x_j} f'(t) dt + \int_{x_{j-1}}^{x_j} \left[f'(x_j) - f'(t)\right] dt \| + \varepsilon(x_i - x_{j-1}) \\ &\leq \|\int_{x_{j-1}}^{x_j} f'(t) dt \| + \|\int_{x_{j-1}}^{x_j} \left(f'(x_j) - f'(t)\right) dt \| + \varepsilon(x_i - x_{j-1}) \\ &\leq \|\int_{x_{j-1}}^{x_j} f'(t) dt \| + \int_{x_{j-1}}^{x_j} \left(f'(x_j) - f'(t)\right) \| dt + \varepsilon(x_i - x_{j-1}) \\ &\leq \|f'(x_j) - f(x_{j-1})\| + 2\varepsilon(x_i - x_{j-1}). \end{split}$$

Summing over j, we arrive at

$$\int_{a}^{b} \left\| f'(t) \right\| dt \le V(f, P) + 2\varepsilon(b - a) \le V(f, [a, b]) + 2\varepsilon(b - a).$$

Since $\varepsilon > 0$ is arbitrary, it follows that $\int_a^b \|f'(t)\| dt \le V(f, [a, b])$ and hence we conclude that $\int_a^b \|f'(t)\| dt = V(f, [a, b]) = L(f)$.

We now prove that $\gamma = (x_1, \ldots, x_n)$ is rectifiable if each x_i is of "rectifiable" which is same saying that each x_i is of bounded variation. This follows from the equivalence of the standard (Euclidean) norm with the L^1 norm on \mathbb{R}^N : $||x||_1 := \sum_1^N |x_i|$. Note that we have $||x||_1 = \sum_j |x_j| \le \sum_j ||x|| \le N ||x||$ for $x \in \mathbb{R}^N$. (In fact, using Cauchy-Schwartz, we have $||x||_1 \le \sqrt{N} ||x||$.) On the other hand, since $||x||_1^2 \ge ||x||^2$, we have $||x|| \le ||x||_1$.

Now if $L(x_i) = L_i$, for any partition P of [a, b], we have

$$L(\gamma, P) := \sum_{j} ||x(t_{j}) - x(t_{j-1})|| \leq \sum_{j} ||x(t_{j}) - x(t_{j-1})||_{1}$$
$$= \sum_{j} \sum_{i=1}^{N} |x_{i}(t_{j}) - x(t_{j-1})|$$
$$= \sum_{i=1}^{N} \sum_{j} |x_{i}(t_{j}) - x(t_{j-1})|$$
$$= \sum_{i} L(x_{i}, P)$$
$$\leq \sum_{i} L_{i}.$$

This establishes our claim that γ is rectifiable iff each component function x_i of γ is "rectifiable" or is of bounded variation.