Functions of Bounded Variation

S. Kumaresan School of Math. & Stat. University of Hyderabad Hyderabad 500 046 kumaresa@gmail.com

The starting point for the study of functions of bounded variation is the desire to define the length of a curve. Let $\gamma\colon[a,b]\to\mathbb{R}^N$ be a continuous function. We call such a function as a curve in $\mathbb{R}^N.$ If we write $x(t):=\gamma(t)=(x_1(t),\ldots,x_N(t))$, then $x(t)$ may be considered as the position vector of a particle at the instant t . We wish to "compute" the length of the curve γ . Since we know how to compute the length of a line segment, we approximate the length of γ by the length of a polygonal path which approximates γ .

Let $P := \{a = t_0 < t_1 < \cdots < t_n = b\}$ be a partition of $[a, b]$. Then we have a polygonal path which is built out of line segments joining $x(t_{j-1})$ to $x(t_j).$ Its length is $\sum_{j=1}^n \|x(t_j)-x(t_{j-1})\|.$ We shall denote this length by $L(\gamma,P).$ Our intuition says that if we keep refining the partition, we shall get better approximation to the length of γ . This suggests that we define

Length of
$$
\gamma \equiv L(\gamma) :=
$$
 lub $\{L(\gamma, P) : P$ is a partition of $[a, b]\}$.

It may happen that $L(\gamma)$ does not exist in R. If $L(\gamma)$ exists, we say that the curve γ is rectifiable and call $L(\gamma)$ as its length.

Let us keep the notation as above. Fix $1 \leq i \leq N$. Note that $|x_i(t)| \leq ||x(t)||$. Hence it follows that $L(x_i,P):=\sum_j |x_i(t_j)-x_i(t_{j-1})|\leq \sum_j \|x(t_j)-x(t_{j-1})\|.$ Hence, if we set $L(x_i):=\text{lub }\{L(x_i,P): P \text{ is a partition of }[a,b]\},$ then $L(x_i)\leq L(\gamma).$ Thus if γ is rectifiable, then $L(x_i)$ is finite for each *i*.

Conversely, if each $L(x_i)$ is finite, then γ is rectifiable. We defer the proof of this statement towards the end of this article. We also show (at the end) that if γ is continuous differentiable, then γ is rectifiable and that $L(\gamma) = \int_a^b \| \gamma'(t) \| \ dt$.

Thus it behooves us to study the special case of real valued functions f on $[a, b]$ and discuss the so-called length $L(f)$.

Definition 1. Let $f: [a, b] \to \mathbb{R}$ be given. Let $P := \{a = x_0, x_1, \ldots, x_n = b\}$ be a partition of [a, b]. The variation of f over [a, b] with respect to the partition P is defined by

$$
V(f, [a, b], P) := \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})|.
$$

If the interval [a, b] is understood, we simplify the notation as $V(f, P)$.

We insert a point $x \in (x_{i-1}, x_i)$ to form a new partition $Q = \{x_0, \ldots, x_{i-1}, x, x_i, \ldots, x_n\}$. In the sum for $V(f, P)$ we replace the term $|f(x_i - f(x_{i-1})|)$ by $|f(x_i - f(x))| + |f(x_i - f(x))|$. This shows that $V(f, P) \leq V(f, Q)$.

This leads us to conclude that $V(f, P) \le V(f, Q)$ if Q is a refinement of P.

Definition 2. The variation f on $[a, b]$ is defined by

$$
V(f, [a, b]) := \text{lub } \{V(f, [a, b], P) : P \text{ is a partition of } [a, b]\}.
$$

We say that f is of bounded variation on [a, b] if $V(f, [a, b])$ is finite.

Remark 3. If f is of bounded variation on [a, b], then f is bounded on [a, b]. Let $x \in [a, b]$ and consider the partition $P := \{a, x, b\}$. Then we have

$$
|f(a) - f(x)| \le |f(x) - f(a)| + |f(b) - f(x)| = V(f, P) \le V(f, [a, b]).
$$

By triangle inequality we obtain

$$
|f(x)| = |f(x) - f(a) + f(a)| \le |f(x) - f(a)| + |f(a)| \le V(f, [a, b]) + |f(a)|.
$$

Example 4. Any monotone function $f : [a, b] \rightarrow \mathbb{R}$ is of bounded variation and we have $V^b_a(f) = |f(b) - f(a)|$. Assume that f is increasing. Observe that $|f(x_j) - f(x_{j-1})| = f(x_j)$ $f(x_{j-1})$. Hence the sum $V(f, [a, b], P)$ is telescopic sum.

$$
\sum_{j} |f(x_j) - f(x_{j-1})| = \sum_{j} f(x_j) - f(x_{j-1}) = f(b) - f(a).
$$

Example 5. Let $f: [a, b] \to \mathbb{R}$ be Lipschitz, say, $|f(x) - f(y)| \le L|x - y|$. Then f is of bounded variation on [a, b]. Observe that, for any partition, we have

$$
\sum_{j} |f(x_j) - f(x_{j-1})| \le \sum_{j} L(x_j - x_{j-1}) = L(b - a).
$$

Example 6. Let $f: [a, b] \to \mathbb{R}$ be continuously differentiable (that is, $f'(x)$ exists on $[a, b]$ and f' is continuous on $[a,b]$). Then f is of bounded variation.

Since f' is continuous on $[a, b]$, there exists $M > 0$ such that $|f'(x)| \leq M$. For, $x, y \in [a, b]$, mean value theorem tells us that there exists z between x and y such that $f(x) - f(y) =$ $f'(z)(x-y)$. It follows that $|f(x) - f(y)| \le M |x - y|$. Thus, f is Lipschitz. The result follows from the last example.

Example 7. We now give an example of a bounded function which is not of bounded variation. Let $f(x) = \begin{cases} \sin(1/x) & x \neq 0 \\ 0 & x = 0 \end{cases}$ $\lim_{x \to 0} (1/x)$ $x \neq 0$ for $x \in [0,1]$. Let $x_0 = 0$ and $x_j = \frac{2}{(n-j)!}$ $\frac{2}{(n-j)\pi}$ for $0 < j < n$. We then have

$$
\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| = 2n.
$$

Hence F is not of bounded variation.

Example 8. The function $f(x) = x \sin(1/x)$ for $0 < x \leq 2/\pi$ and $f(0) = 0$ is continuous, bounded but is not of bounded variation. (Draw the graph of this function to see why.)

Let

$$
x_0 = 0 < x_1 = \frac{2}{(2n+1)\pi}, < x_2 = \frac{2}{(2n)\pi} < x_3 = \frac{2}{(2n1)\pi} \cdots < x_{2n} = \frac{2}{2\pi} < x_{2n+1} = \frac{2}{\pi}
$$

be a partition of the domain. Then we have

$$
\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| = \frac{2}{\pi} + \frac{2}{2\pi} + \frac{2}{3\pi} + \dots + \frac{2}{(2n+1)\pi}
$$

$$
= \frac{2}{\pi} \left(\sum_{k=1}^{2n+1} \frac{1}{k} \right).
$$

Since the harmonic series $\sum_k \frac{1}{k}$ $\frac{1}{k}$ is divergent, it follows that the function is not of bounded variation.

Proposition 9. *If* f , g are of bounded variation on [a, b] so are $f + g$ and $f - g$.

Proof. Observe that we have

$$
\sum_{j=1}^{n} |f(x_j) \pm g(x_j) - [f(x_{j-1}) \pm g(x_{j-1})]| \leq \sum_{j} |f(x_j) - f(x_{j-1})| + \sum_{j} |g(x_j) - g(x_{j-1})|
$$

$$
\leq V(f, [a, b]) + V(g, [a, b]).
$$

 \Box

Definition 10. Total variation of $f : [a, b] \to \mathbb{R}$, a function of bounded variation is the function F defined as follows:

$$
F(x) := V(f, [a, x]) \equiv \text{lub } \{ V(f, [a, x], P) : \text{ where } P \text{ is a partition of } [a, x] \}.
$$

Theorem 11. Let f : $[a, b] \rightarrow \mathbb{R}$ be of bounded variation and F its total variation. Then (i) $|f(x) - f(y)| \leq |F(x) - F(y)|$ *for* $a \leq x < y \leq b$ *.* (ii) F *and* F − f *are increasing on* [a, b] *and* (iii) $V_a^b(f) \leq V_a^b(F)$.

Proof. The idea is very simple. If $x < y$, then any partition $P = \{x_0, \ldots, x_n = x\}$ of $[a, x]$ gives rise to a partition Q of $[a, y]$ in a natural way: $Q = \{a = x_0, \ldots, x_n = x, y\}$. Hence we obtain

$$
\sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| \le \sum_{j=1}^{n} |f(x_j) - f(x_{j-1})| + |f(y) - f(x)|
$$

$$
\le F(y).
$$

If we take the LUB of this inequality over all the partitions of $[a, x]$ we obtain

$$
F(x) \le F(x) + |f(y) - f(x)| \le F(y).
$$

(i) follows from this.

If $\emptyset \neq A \subset B \subset \mathbb{R}$, then we know lub $A \leq$ lub B. Given any partition P of $[a, x]$, let Q denote the partition of $[a, y]$ as in (i). Then we have $V(f, [a, x], P) \leq V(f, [a, y], Q)$. If we take the LUB of this inequality over all the partitions of [a, x], we get $F(x) \leq$ lub $\{V(f,[a,y],Q)\}\leq F(y)$. Hence it follows that F is increasing on $[a,b]$.

To show that $F - f$ is increasing, we use the inequality of (i):

 $f(y) - f(x) \leq |f(y) - f(x)| \leq F(y) - f(x).$

Therefore, $F(x) - f(x) \leq F(y) - f(y)$. Thus (ii) is proved.

Let P be a partition of $[a, b]$. Using (i), we obtain

$$
\sum_{j} |f(x_j) - f(x_{j-1})| \leq \sum_{j} |F(x_j) - F(x_{j-1})| \leq V(F, [a, b]).
$$

If we now take the LUB of this inequality over all partitions of [a, b], we obtain $V(f,[a,b]) \leq$ $V(F, [a, b]).$ \Box

Theorem 12 (Jordan). Let $f: [a, b] \rightarrow \mathbb{R}$. Then f is of bounded variation iff there exist *increasing functions* F and G such that $f = F - G$.

Proof. Take $G = F - f$ where F is the total variation of f.

Theorem 13. Let f : $[a, b] \rightarrow \mathbb{R}^n$ be C^1 . Then we have

$$
L(f) := V(f, , [a, b]) = \int_a^b ||f'(t)|| dt.
$$

Proof. Let $P = \{x_0, x_1, \ldots, x_n\}$ be a partition of $[a, b]$. By the fundamental theorem of calculus, we have

$$
\|f(x_j) - f(x_{j-1})\| = \left\| \int_{x_j-1}^{x_j} f'(t) dt \right\| \le \int_{x_j-1}^{x_j} \|f'(t)\| dt.
$$

Summing this inequality over i we obtain

$$
V(f, [a, b], P) \equiv \sum_{j} \| f(x_j) - f(x_{j-1}) \| \le \int_{a}^{b} \| f'(t) \| dt.
$$

Taking the LUB over all partitions, we get $V(f,[a,b])\leq \int_a^b\|f'(t)\|\;dt.$

To get the reverse inequality, let $\varepsilon > 0$ be given. Since f' is continuous on $[a, b]$, it is uniformly continuous on [a, b]. Hence there exists $\delta > 0$ such that for $s, t \in [a, b]$ with $|s-t| < \delta$, we have $|| f'(s) - f'(t) || < \varepsilon$. We subdivide $[a, b]$ into N subintervals of equal length $(b-a)/N$ in such a way that $(b-a)/N < \delta$. Let $P = \{x_0, x_1, \ldots, x_N\}$ be the partition. Observe that for $t \in [x_{j-1}, x_j]$, we have $|| f'(t) - f(x_j)|| < \varepsilon$. Hence for such t, we have

$$
\|f'(t)\| \le \|f'(x_j)\| + \varepsilon. \tag{1}
$$

 \Box

We integrate this inequality on $[x_{j-1}, x_j]$ and obtain

$$
\int_{x_{j-1}}^{x_j} ||f'(t)|| \, dt \leq \int_{x_{j-1}}^{x_j} ||f'(x_j)|| \, dt + \varepsilon (x_i - x_{j-1})
$$
\n
$$
= ||f'(x_j)|| \, (x_j - x_{j-1}) + \varepsilon (x_i - x_{j-1})
$$
\n
$$
= \left\| \int_{x_{j-1}}^{x_j} [f'(t) + f'(x_j) - f'(t)] \, dt \right\| + \varepsilon (x_i - x_{j-1})
$$
\n
$$
= \left\| \int_{x_{j-1}}^{x_j} f'(t) \, dt + \int_{x_{j-1}}^{x_j} [f'(x_j) - f'(t)] \, dt \right\| + \varepsilon (x_i - x_{j-1})
$$
\n
$$
\leq \left\| \int_{x_{j-1}}^{x_j} f'(t) \, dt \right\| + \left\| \int_{x_{j-1}}^{x_j} (f'(x_j) - f'(t)) \, dt \right\| + \varepsilon (x_i - x_{j-1})
$$
\n
$$
\leq \left\| \int_{x_{j-1}}^{x_j} f'(t) \, dt \right\| + \int_{x_{j-1}}^{x_j} ||(f'(x_j) - f'(t))|| \, dt + \varepsilon (x_i - x_{j-1})
$$
\n
$$
\leq ||f'(x_j) - f(x_{j-1})|| + 2\varepsilon (x_i - x_{j-1}).
$$

Summing over j , we arrive at

$$
\int_a^b \|f'(t)\| dt \le V(f, P) + 2\varepsilon(b - a) \le V(f, [a, b]) + 2\varepsilon(b - a).
$$

Since $\varepsilon > 0$ is arbitrary, it follows that $\int_a^b \|f'(t)\| \ dt \le V(f,[a,b])$ and hence we conclude that $\int_a^b \|f'(t)\| dt = V(f, [a, b]) = L(f).$

We now prove that $\gamma = (x_1, \ldots, x_n)$ is rectifiable if each x_i is of "rectifiable" which is same saying that each x_i is of bounded variation. This follows from the equivalence of the standard (Euclidean) norm with the L^1 norm on $\mathbb{R}^N\colon \|x\|_1:=\sum_1^N |x_i|.$ Note that we have $\|x\|_1 = \sum_j |x_j| \leq \sum_j \|x\| \leq N\, \|x\|$ for $x \in \mathbb{R}^N$. (In fact, using Cauchy-Schwartz, we have $||x||_1 \leq$ √ $\overline{N}\,\|x\|$.) On the other hand, since $\|x\|_1^2\geq \|x\|^2$, we have $\|x\|\leq \|x\|_1.$

Now if $L(x_i) = L_i$, for any partition P of $[a, b]$, we have

$$
L(\gamma, P) := \sum_{j} ||x(t_j) - x(t_{j-1})|| \le \sum_{j} ||x(t_j) - x(t_{j-1})||_1
$$

=
$$
\sum_{j} \sum_{i=1}^{N} |x_i(t_j) - x(t_{j-1})|
$$

=
$$
\sum_{i=1}^{N} \sum_{j} |x_i(t_j) - x(t_{j-1})|
$$

=
$$
\sum_{i} L(x_i, P)
$$

$$
\le \sum_{i} L_i.
$$

This establishes our claim that γ is rectifiable iff each component function x_i of γ is "rectifiable" or is of bounded variation.