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The starting point for the study of functions of bounded variation is the desire to define
the length of a curve. Let γ : [a, b] → RN be a continuous function. We call such a function
as a curve in RN . If we write x(t) := γ(t) = (x1(t), . . . , xN (t)), then x(t) may be considered
as the position vector of a particle at the instant t. We wish to “compute” the length of the
curve γ. Since we know how to compute the length of a line segment, we approximate the
length of γ by the length of a polygonal path which approximates γ.

Let P := {a = t0 < t1 < · · · < tn = b} be a partition of [a, b]. Then we have a
polygonal path which is built out of line segments joining x(tj−1) to x(tj). Its length is∑n

j=1 ‖x(tj)− x(tj−1)‖. We shall denote this length by L(γ, P ). Our intuition says that if
we keep refining the partition, we shall get better approximation to the length of γ. This
suggests that we define

Length of γ ≡ L(γ) := lub {L(γ, P ) : P is a partition of [a, b]}.

It may happen that L(γ) does not exist in R. If L(γ) exists, we say that the curve γ is
rectifiable and call L(γ) as its length.

Let us keep the notation as above. Fix 1 ≤ i ≤ N . Note that |xi(t)| ≤ ‖x(t)‖. Hence
it follows that L(xi, P ) :=

∑
j |xi(tj)− xi(tj−1)| ≤

∑
j ‖x(tj)− x(tj−1)‖. Hence, if we set

L(xi) := lub {L(xi, P ) : P is a partition of [a, b]}, then L(xi) ≤ L(γ). Thus if γ is rectifiable,
then L(xi) is finite for each i.

Conversely, if each L(xi) is finite, then γ is rectifiable. We defer the proof of this state-
ment towards the end of this article. We also show (at the end) that if γ is continuous
differentiable, then γ is rectifiable and that L(γ) =

∫ b
a ‖γ

′(t)‖ dt.

Thus it behooves us to study the special case of real valued functions f on [a, b] and
discuss the so-called length L(f).

Definition 1. Let f : [a, b] → R be given. Let P := {a = x0, x1, . . . , xn = b} be a partition of
[a, b]. The variation of f over [a, b] with respect to the partition P is defined by

V (f, [a, b], P ) :=

n∑
j=1

|f(xj)− f(xj−1)| .

If the interval [a, b] is understood, we simplify the notation as V (f, P ).
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We insert a point x ∈ (xj−1, xj) to form a new partition Q = {x0, . . . , xj−1, x, xj , . . . , xn}.
In the sum for V (f, P ) we replace the term |f(xj − f(xj−1)| by |f(xj − f(x)|+ |f(xj − f(x)|.
This shows that V (f, P ) ≤ V (f,Q).

This leads us to conclude that V (f, P ) ≤ V (f,Q) if Q is a refinement of P .

Definition 2. The variation f on [a, b] is defined by

V (f, [a, b]) := lub {V (f, [a, b], P ) : P is a partition of [a, b]}.

We say that f is of bounded variation on [a, b] if V (f, [a, b]) is finite.

Remark 3. If f is of bounded variation on [a, b], then f is bounded on [a, b]. Let x ∈ [a, b]
and consider the partition P := {a, x, b}. Then we have

|f(a)− f(x)| ≤ |f(x)− f(a)|+ |f(b)− f(x)| = V (f, P ) ≤ V (f, [a, b]).

By triangle inequality we obtain

|f(x)| = |f(x)− f(a) + f(a)| ≤ |f(x)− f(a)|+ |f(a)| ≤ V (f, [a, b]) + |f(a)| .

Example 4. Any monotone function f : [a, b] → R is of bounded variation and we have
V b
a (f) = |f(b)− f(a)|. Assume that f is increasing. Observe that |f(xj)− f(xj−1)| = f(xj)−
f(xj−1). Hence the sum V (f, [a, b], P ) is telescopic sum.∑

j

|f(xj)− f(xj−1)| =
∑
j

f(xj)− f(xj−1) = f(b)− f(a).

Example 5. Let f : [a, b] → R be Lipschitz, say, |f(x)− f(y)| ≤ L |x− y|. Then f is of
bounded variation on [a, b]. Observe that, for any partition, we have∑

j

|f(xj)− f(xj−1)| ≤
∑
j

L(xj − xj−1) = L(b− a).

Example 6. Let f : [a, b]→ R be continuously differentiable (that is, f ′(x) exists on [a, b] and
f ′ is continuous on [a, b]). Then f is of bounded variation.

Since f ′ is continuous on [a, b], there existsM > 0 such that |f ′(x)| ≤M . For, x, y ∈ [a, b],
mean value theorem tells us that there exists z between x and y such that f(x) − f(y) =
f ′(z)(x−y). It follows that |f(x)− f(y)| ≤M |x− y|. Thus, f is Lipschitz. The result follows
from the last example.

Example 7. We now give an example of a bounded function which is not of bounded variation.

Let f(x) =
{
sin(1/x) x 6= 0

0 x = 0
for x ∈ [0, 1]. Let x0 = 0 and xj =

2
(n−j)π for 0 < j < n. We

then have
n∑
j=1

|f(xj)− f(xj−1)| = 2n.

Hence F is not of bounded variation.
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Example 8. The function f(x) = x sin(1/x) for 0 < x ≤ 2/π and f(0) = 0 is continuous,
bounded but is not of bounded variation. (Draw the graph of this function to see why.)

Let

x0 = 0 < x1 =
2

(2n+ 1)π
,< x2 =

2

(2n)π
< x3 =

2

(2n1)π
· · · < x2n =

2

2π
< x2n+1 =

2

π

be a partition of the domain. Then we have
n∑
j=1

|f(xj)− f(xj−1)| =
2

π
+

2

2π
+

2

3π
+ · · ·+ 2

(2n+ 1)π

=
2

π

(
2n+1∑
k=1

1

k

)
.

Since the harmonic series
∑

k
1
k is divergent, it follows that the function is not of bounded

variation.

Proposition 9. If f, g are of bounded variation on [a, b] so are f + g and f − g.

Proof. Observe that we have
n∑
j=1

|f(xj)± g(xj)− [f(xj−1)± g(xj−1)]| ≤
∑
j

|f(xj)− f(xj−1)|+
∑
j

|g(xj)− g(xj−1)|

≤ V (f, [a, b]) + V (g, [a, b]).

Definition 10. Total variation of f : [a, b]→ R, a function of bounded variation is the function
F defined as follows:

F (x) := V (f, [a, x]) ≡ lub {V (f, [a, x], P ) : where P is a partition of [a, x]}.

Theorem 11. Let f : [a, b]→ R be of bounded variation and F its total variation. Then
(i) |f(x)− f(y)| ≤ |F (x)− F (y)| for a ≤ x < y ≤ b.
(ii) F and F − f are increasing on [a, b] and
(iii) V b

a (f) ≤ V b
a (F ).

Proof. The idea is very simple. If x < y, then any partition P = {x0, . . . , xn = x} of [a, x]
gives rise to a partition Q of [a, y] in a natural way: Q = {a = x0, . . . , xn = x, y}. Hence we
obtain

n∑
j=1

|f(xj)− f(xj−1)| ≤
n∑
j=1

|f(xj)− f(xj−1)|+ |f(y)− f(x)|

≤ F (y).

If we take the LUB of this inequality over all the partitions of [a, x] we obtain

F (x) ≤ F (x) + |f(y)− f(x)| ≤ F (y).
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(i) follows from this.

If ∅ 6= A ⊂ B ⊂ R, then we know lub A ≤ lub B. Given any partition P of [a, x], let
Q denote the partition of [a, y] as in (i). Then we have V (f, [a, x], P ) ≤ V (f, [a, y], Q).
If we take the LUB of this inequality over all the partitions of [a, x], we get F (x) ≤
lub {V (f, [a, y], Q)} ≤ F (y). Hence it follows that F is increasing on [a, b].

To show that F − f is increasing, we use the inequality of (i):

f(y)− f(x) ≤ |f(y)− f(x)| ≤ F (y)− f(x).

Therefore, F (x)− f(x) ≤ F (y)− f(y). Thus (ii) is proved.

Let P be a partition of [a, b]. Using (i), we obtain∑
j

|f(xj)− f(xj−1)| ≤
∑
j

|F (xj)− F (xj−1)| ≤ V (F, [a, b]).

If we now take the LUB of this inequality over all partitions of [a, b], we obtain V (f, [a, b]) ≤
V (F, [a, b]).

Theorem 12 (Jordan). Let f : [a, b] → R. Then f is of bounded variation iff there exist
increasing functions F and G such that f = F −G.

Proof. Take G = F − f where F is the total variation of f .

Theorem 13. Let f : [a, b]→ Rn be C1. Then we have

L(f) := V (f, , [a, b]) =

∫ b

a

∥∥f ′(t)∥∥ dt.
Proof. Let P = {x0, x1, . . . , xn} be a partition of [a, b]. By the fundamental theorem of
calculus, we have

‖f(xj)− f(xj−1)‖ =

∥∥∥∥∥
∫ xj

xj−1
f ′(t) dt

∥∥∥∥∥ ≤
∫ xj

xj−1

∥∥f ′(t)∥∥ dt.
Summing this inequality over j we obtain

V (f, [a, b], P ) ≡
∑
j

‖f(xj)− f(xj−1)‖ ≤
∫ b

a

∥∥f ′(t)∥∥ dt.
Taking the LUB over all partitions, we get V (f, [a, b]) ≤

∫ b
a ‖f

′(t)‖ dt.

To get the reverse inequality, let ε > 0 be given. Since f ′ is continuous on [a, b], it
is uniformly continuous on [a, b]. Hence there exists δ > 0 such that for s, t ∈ [a, b] with
|s− t| < δ, we have ‖f ′(s)− f ′(t)‖ < ε. We subdivide [a, b] into N subintervals of equal
length (b−a)/N in such a way that (b−a)/N < δ. Let P = {x0, x1, . . . , xN} be the partition.
Observe that for t ∈ [xj−1, xj ], we have ‖f ′(t)− f(xj)‖ < ε. Hence for such t, we have∥∥f ′(t)∥∥ ≤ ∥∥f ′(xj)∥∥+ ε. (1)
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We integrate this inequality on [xj−1, xj ] and obtain∫ xj

xj−1

∥∥f ′(t)∥∥ dt ≤ ∫ xj

xj−1

∥∥f ′(xj)∥∥ dt+ ε(xi − xj−1)

=
∥∥f ′(xj)∥∥ (xj − xj−1) + ε(xi − xj−1)

=

∥∥∥∥∥
∫ xj

xj−1

[
f ′(t) + f ′(xj)− f ′(t)

]
dt

∥∥∥∥∥+ ε(xi − xj−1)

=

∥∥∥∥∥
∫ xj

xj−1

f ′(t) dt+

∫ xj

xj−1

[
f ′(xj)− f ′(t)

]
dt

∥∥∥∥∥+ ε(xi − xj−1)

≤

∥∥∥∥∥
∫ xj

xj−1

f ′(t) dt

∥∥∥∥∥+
∥∥∥∥∥
∫ xj

xj−1

(
f ′(xj)− f ′(t)

)
dt

∥∥∥∥∥+ ε(xi − xj−1)

≤

∥∥∥∥∥
∫ xj

xj−1

f ′(t) dt

∥∥∥∥∥+
∫ xj

xj−1

∥∥(f ′(xj)− f ′(t))∥∥ dt+ ε(xi − xj−1)

≤
∥∥f ′(xj)− f(xj−1)∥∥+ 2ε(xi − xj−1).

Summing over j, we arrive at∫ b

a

∥∥f ′(t)∥∥ dt ≤ V (f, P ) + 2ε(b− a) ≤ V (f, [a, b]) + 2ε(b− a).

Since ε > 0 is arbitrary, it follows that
∫ b
a ‖f

′(t)‖ dt ≤ V (f, [a, b]) and hence we conclude
that

∫ b
a ‖f

′(t)‖ dt = V (f, [a, b]) = L(f).

We now prove that γ = (x1, . . . , xn) is rectifiable if each xi is of “rectifiable” which is
same saying that each xi is of bounded variation. This follows from the equivalence of the
standard (Euclidean) norm with the L1 norm on RN : ‖x‖1 :=

∑N
1 |xi|. Note that we have

‖x‖1 =
∑

j |xj | ≤
∑

j ‖x‖ ≤ N ‖x‖ for x ∈ RN . (In fact, using Cauchy-Schwartz, we have
‖x‖1 ≤

√
N ‖x‖.) On the other hand, since ‖x‖21 ≥ ‖x‖

2, we have ‖x‖ ≤ ‖x‖1.

Now if L(xi) = Li, for any partition P of [a, b], we have

L(γ, P ) :=
∑
j

‖x(tj)− x(tj−1)‖ ≤
∑
j

‖x(tj)− x(tj−1)‖1

=
∑
j

N∑
i=1

|xi(tj)− x(tj−1)|

=

N∑
i=1

∑
j

|xi(tj)− x(tj−1)|

=
∑
i

L(xi, P )

≤
∑
i

Li.

This establishes our claim that γ is rectifiable iff each component function xi of γ is “recti-
fiable” or is of bounded variation.
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