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The aim of this article is to prove that if Γ is a subset of R2 that is homeomorphic to S1,
then R2 \ Γ has two connected components. The proof uses some basic results in homotopy
theory and covering spaces. It has a strong analytic flavour.

Definition 1. A simple closed curve or a Jordan curve in a topological space X is a one-to-
one continuous map γ of S1 into X. If X is hausdorff then γ is a homeomorphism of S1 onto
its image. The image Γ := γ(S1) is often called the simple closed curve.

The result we are after is stated formally as follows:

Theorem 2 (Jordan Curve Theorem). If γ is a simple closed curve in R2 with image Γ then
R2 \ Γ has precisely two connected components.

Definition 3. Assuming the theorem, we can define the outside and the inside of Γ. The
exterior of any disk B(0, R) containing Γ is contained in a single connected component of
R2 \ Γ. This component is called the outside of Γ and the other is called the inside of Γ.

Thus our task is to prove that there is precisely one bounded component of R2 \ Γ, the
inside of Γ.

We give two other formulations of the theorem.

Theorem 4. If γ is a simple closed curve in S2 with image Γ, then S2 \ Γ has precisely two
connected components.

Theorem 5. Let h : R → R2 be a one-to-one continuous map such that |h(t)| → ∞ as
|t| → ∞. Then R2 \ h(R) has precisely two connected components.

Thm. 5 implies Thm. 4: To see this, we regard S2 as the one-point compactification of R2

and we regard S1 as the one-point compactification of R. Suppose γ is a simple closed curve
in S2, with image Γ. By means of a rotation of R3 we may assume that γ(∞) =∞. Then the
restriction h of γ to R satisfies the hypothesis of Thm. 5. Since S2 \ Γ = R2 \ h(R), Thm. 5
shows that S2 \ Γ has precisely two connected components. Thus Thm. 4 is established.

Thm. 4 implies Thm. 2: This is very easy. For, we may regard a simple closed curve γ in
R2 as a simple closed curve in S2 = R∪{∞}. If S2 \Γ has two connected components U and
V , and, say, ∞ ∈ V , then R2 \ Γ has two connected components, namely, U and V ∪ {∞}.

The following is the easiest version of van Kampen theorem.
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Lemma 6. Let U and V be simply connected, path connected open subsets of a path connected
X. Assume further that U ∩ V is path connected. Then X is simply connected.

Proof. Let p ∈ U and γ : [0, 1] → X be loop at p. Then γ−1(X \ U) is a compact subset of
the open subset γ−1(V ) of [0, 1]. Using Lebesgue covering lemma we can show that there
are finite number of disjoint closed intervals Ij := [sj , tj ], 1 ≤ j ≤ N , of [0, 1] such that Ij ’s
cover γ−1(X \ U), and γ(Ij) ⊂ V for 1 ≤ j ≤ N . In particular, γ(sj) and γ(tj) lie in U ∩ V .
By hypothesis, there is a path αj : Ij → U ∩ V from γ(sj) to γ(tj). Let α be the path in U
defined so that α(s) = αj(s) for s ∈ Ij , 1 ≤ j ≤ N , and α(s) = γ(s) for s /∈ ∪Ij . Since V
is simply connected, the path αj is homotopic to the restriction path of γ to Ij . Combining
these homotopies in the obvious way, we see that α is homotopic to γ. Now the path α lies in
U and U is simply connected, so that α is homotopic to a point. It follows that γ is homotopic
to a constant path and hence X is simply connected.

In fact, we need a stronger result (such as van Kampen theorem) than the last lemma.
For instance, suppose X is path connected space such that X = U ∪ V with U and V simply
connected. What can we say about π1(X)? It turns out that π1(X) is a free group with
number of generators one less than the number of components of U ∩V . However, luckily we
need only the piece of information contained in Lemma 8.

The following exercise is meant to prepare the reader for the proof of the next result.

Ex. 7. We assume the figure eight is formed of two circles touching tangentially at a common
point. The circles will be regarded as two loops based at the common point. Construct three
sheeted covering of the figure eight to prove that the loops α ◦β and β ◦α lift to paths whose
terminal points are different and hence the loops are not homotopic.

Lemma 8. Let X be connected, locally path connected (hence path connected) space. Let U
and V be simply connected subsets of X which cover X. If U ∩V has three or more connected
components, then π1(X) is not abelian.

Proof. The proof depends on the construction of an appropriate covering space unwinding
the two loops in X. (Have you done Exer. 7?)

Let W1 and W2 be distinct path components of U ∩V and let W0 = (U ∩V ) \ (W1 ∪W2).
Then Wi, 0 ≤ i ≤ 2 are disjoint open subsets of X whose union is U ∩V . By hypothesis, Wi’s
are nonempty.

Let Umn and Vmn be disjoint copies of U and V respectively, for m,n ∈ Z. An element
of Umn will be denoted by (x, U,m, n). Let Y denote the union of the Umn’s and Vmn’s.
Define an equivalence relation ∼ on Y so that (x, U, j, k) ∼ (y, V,m, n) iff one of the following
condition holds:
(i) x = y ∈W0, j = m, k = n.

(ii) x = y ∈W1, j = m+ 1, k = n.
(iii) x = y ∈W2, j = m 6= 0, k = n.
(iv) x = y ∈W2, j = m = 0, k = n+ 1.

Thus the conditions (i)–(iv) give a prescription of pasting copies of U ’s with copies of V ’s.
Let E denote the quotient space of Y with respect to this equivalence relation. The natural
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projections of Umn’s and Vmn’s onto the first coordinates determine a natural projection π of
E onto X. π is easily seen to be a covering map.

Fix p ∈ U . For j = 1, 2, let αj be a loop in X that starts at p, goes through U to W0

continues in V to Wj , and returns to p in U . One checks that the lift of α1 to E starting
at (p, U, 0, 0) travels through U00, then through V00, then back through U10 to terminate
at (p, U, 1, 0). Similarly the lift of α2 to E starting at (p, U, 1, 0) terminates at (P,U, 1, 0).
Consequently the lift of α1α2 to E starting at (p, U, 0, 0) terminates at (p, U, 1, 0). On the
other hand, the lift of α2α1 to E starting at (p, U, 0, 0) terminates at (p, U, 1, 1). Since the
lifts of α1α2 and α2α1 terminate at different points of E, α1α2 is not homotopic to α2α1.
Thus, π1(X) is not abelian.

Lemma 9. Let T be a proper closed subset of R2 and let Q be the open subset of R3 defined
by Q := R3 \ {(x, y, 0) : (x, y) ∈ T}. Then
(i) If R2 \ T is connected then Q is simply connected.
(ii) If R2 \ T has at least three connected components, then π(Q) is not abelian.

Proof. Since R2 \ T is not empty, Q is connected. Define subsets U and V by

U = {(x, y, z) : z > 0} ∪ {(x, y, z) : z > −1, (x, y) /∈ T},
V = {(x, y, z) : z < 0} ∪ {(x, y, z) : z < 1, (x, y) /∈ T}.

Then U and V are connected open subsets of Q that cover Q.

We claim that U and V are simply connected. It is enough to see that U is simply
connected, since V is homeomorphic to U under the reflection (x, y, z) 7→ (x, y,−z).

Let γ : [0, 1] → U be a loop with γ(0) = γ(1) = (0, 0, 1). Define H : [0, 1] × [0, 1] → U by
H(t, s) := γ(t) + (0, 0, s − s · z(t)) where z(t) is the z-coordinate of γ(t) if this coordinate is
negative and 0 if it is positive. It is easy to check that the image of H lies in U and that H is
continuous. Also, H(0, t) = γ(t) and H(1, t) ⊂ {(x, y, z) : z ≥ 1}. Since {(x, y, z) : z ≥ 1} is a
convex subset of U containing (0, 0, 1), the loop t 7→ H(1, t) is homotopic in U to the constant
loop at (0, 0, 1). Therefore γ is homotopic in U to the constant loop at (0,0,1). Hence U is
simply connected.

Next observe that

U ∩ V = {(x, y, z) : (x, y) ∈ T,−1 < z < 1}

is homeomorphic to (R2 \ T ) × (−1, 1). If R2 \ T is connected, then U ∩ V is connected.
Hence, by Lemma 6, Q is simply connected. On the other hand, if R2 \ T has at least three
components, the so does U ∩ V . By Lemma 8, π1(Q) is not abelian.

Lemma 10. Let h : R→ R2 be a one-to-one continuous map such that |h(t)| → ∞ as |t| → ∞.
Let ι : R2 → R3 be the natural embedding: (x, y) 7→ (x, y, 0). Then there is a homeomorphism
F of R3 such that (F ◦ ι ◦ h)(t) = (0, 0, t).

Proof. Define g : h(R) → R by g(h(t)) = t, t ∈ R. It is easy to check that g is continuous
on h(R). By Tietze extension theorem, there is a continuous function G : R2 → R such
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that G(p) = g(p) for all p ∈ h(R). Let hi be the coordinate functions of h so that h(t) =
(h1(t), h2(t)). Then G satisfies

G(h1(t), h2(t)) = t, t ∈ R. (1)

Define F1 : R3 → R3 by F1(x, y, z) := (x, y, z + G(x, y)). Since F1 has continuous inverse
(x, y, z) 7→ (x, y, z −G(x, y)), F1 is a homeomorphism. Define F2 : R3 → R3 by F2(x, y, z) :=
(x− h1(z), y − h2(z), z). Since F2 has continuous inverse (x, y, z) 7→ (x+ h1(z), y + h2(z), z),
F2 is a homeomorphism.

Set F := F2 ◦ F1, a homeomorphism of R3. Using Eq. 1, we obtain

(F ◦ ι ◦ h)(t) = F2(F1(h1(t), h2(t), 0)) = F2(h1(t), h2(t), 0) = t.

This proves the result.

The following is an extension of the last lemma.

Ex. 11. Let A ⊂ Rm and B ⊂ Rn be closed subsets. Let f : A → B be a homeomorphism.
Then there is a homeomorphism ϕ : Rm+n → Rm+n such that, for x ∈ A, we have ϕ(x, 0) =
(0, f(x)).

Proof. (of Thm. 5)
First note that h(R) 6= R2. In fact, the condition on h ensures that h is a homeomorphism of
R onto its image. If h(R) = R2, then R and R2 are homeomorphic which is clearly false.

Consider the set Q of Lemma 9 for T = h(R). The homeomorphism F of Lemma 10 maps
Q homeomorphically onto the set R3 \ {(0, 0, t) : t ∈ R} ≡ (R2 \ {0})× R. The fundamental
group of this space is Z. Hence π1(Q) ' Z. Since π1(Q) is nonzero and abelian, by Lemma 9
we see that R2 \ h(R) has precisely two components.

The above proof is an adaptation of Doyle’s proof [1]. We give below his formulation and
proof.

Theorem 12. A simple closed curve J in R2 separates R2.

Proof. If R2 \J is connected, compactify R2 by adding a point and then remove a point from
J to get a topological closed line ` in R2 that does not separate R2.

Consider R2 as a plane in R3. By the van Kampen Theorem [3], R3\` is simply connected.
However by [2] there is a homeomorphism of R3 onto R3 carrying ` onto the z-axis. But
R3 \ z − {axis} has the homotopy type of a circle. Hence R2 \ J is not connected.
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