Banach Mapping Theorem

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1 (KNASTER FIXED POINT THEOREM). If $F: P(A) \to P(A)$ is orderpreserving, meaning that F(X) is contained in F(Y) whenever $X \subset Y$, then F has a fixed point.

Proof. Let A_1 be the union of all sets $X \in P(A)$ such that $X \subseteq F(X)$. It is easy to see that $F(A_1) = A_1$. (In fact, this A_1 is the greatest fixed point; there is also a least one.)

The following is a useful improvement of the usual Schroeder-Bernstein statement:

Theorem 2 (BANACH MAPPING THEOREM). Given any mappings (not necessarily injections) $f: A \to B$ and $g: B \to A$, we can partition A into disjoint sets A_1 and A_2 , and B into disjoint sets B_1 and B_2 , so that $f[A_1] = B_1$ and $g[B_2] = A_2$.

Proof. Define $F: P(A) \to P(B)$ by setting $F(X) = A \setminus g[B \setminus f[X]]$. Clearly, F is orderpreserving; by Knaster's theorem, then, F has a fixed point. Let A_1 be a fixed point of F, and let $B_1 = f[A_1], B_2 = B \setminus B_1$, and $A_2 = g[B_2] = A \setminus A_1$.