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The aim of this article is to introduce the reader to some basic results on convex functions
and their applications to inequalities, the bread and butter of analysis. Unfortunately, convex
functions are not taught nowadays in standard curriculum. It is a well-known fact that the
study of convex functions unifies the treatment of almost all classical inequalities. Convex
functions also arise when we deal with the existence of points of global extrema of real valued
functions. Knowledge of convex functions is useful in sketching the graphs of functions from
R to R.

1 Basic Results

Let I, J be intervals in R. A function f : I → R is said to be convex if for all t ∈ [0, 1] and for
all x, y ∈ I, the following inequality holds:

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y). (1)

Recall that the line joining (y, f(y)) and (x, f(x)) in R
2 is given by

t(x, f(x)) + (1− t)(y, f(y)) = (tx+ (1− t)y, tf(x) + (1− t)f(y)), 0 ≤ t ≤ 1.

Then the y-coordinates of points on this line are given by tf(x) + (1 − t)f(y). Thus the
geometric meaning of the definition is that the line segment joining (x, f(x)) and (y, f(y)) is
never below the graph of the function. See Fig. 1.

If for 0 < t < 1, strict inequality holds in (1), then the function is said to be strictly
convex.

The expression tx+(1−t)y is called a convex combination of x and y. More generally, if xj ,
1 ≤ j ≤ n are points of the interval and tj ∈ [0, 1] such that

∑n
j=1 tj = 1, then t1x1+· · ·+tnxn

is called a convex linear combination of xj’s. A convex combination is a weighted average.
The convexity inequality (1) can be interpreted as saying that every weighted average of two
function values is greater than the function value at the corresponding weighted average of
the arguments.

Ex. 1. Show that the functions f(x) = ax+ b, g(x) = x2 and h(x) = |x| are convex. (Later,
we shall see an easy method of proof for the first two functions.)
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Figure: 1

Ex. 2. A function f : I → R is convex iff f : J → R is convex for every subinterval J ⊂ I.

Theorem 3 (Jensen’s Theorem). Let f : J → R be convex. Let z =
∑n

j=1 tjxj be a convex
combination of points of J . Then

f(t1x1 + · · ·+ tnxn) ≤ t1f(x1) + · · ·+ tnf(xn), for tj ∈ [0, 1] with
∑

j

tj = 1. (2)

Proof. We prove the result by induction. When n = 2, it is the definition of convexity.
Assume the result for all convex linear combinations with n − 1 terms. Let z =

∑

j tjxj be

given. Let sj =
tj

1−t1
. Then z = t1x1 + (1 − t1)(

∑n
j=2 sjxj). Using the inequality for n = 2

and again for n− 1, we get

f(t1x1 + · · ·+ tnxn) ≤ t1f(x1) + (1− t1)f(

n∑

j=2

sjxj)

≤ t1f(x1) + (1− t1)
n∑

j=2

sjf(xj)

= t1f(x1) + t2f(x2) + · · · + tnf(xn).

Let mx,y := f(y)−f(x)
y−x for any x, y ∈ I. Note that this is the slope of the line joining

(x, f(x)) and (y, f(y)).

Lemma 4. Let f : I → R be given. Let x, y ∈ I. Fix t ∈ [0, 1] and z := (1 − t)x + ty. Let

mu,v :=
f(v)−f(u)

v−u for any u, v ∈ I. Then the following are equivalent:
(a) f(z) ≤ (1− t)f(x) + tf(y).
(b) mx,z ≤ mx,y.
(c) mx,y ≤ mz,y.
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Figure: 2

Proof. See Fig. 2.

(a) ⇐⇒ (b): Note that (a) can rewritten as f(z) − f(x) ≤ t[f(y) − f(x)]. Since
t = (z − x)/(y − x), this can be cast as

f(z)− f(x) ≤
z − x

y − x
[f(y)− f(x)]. (3)

Since the (b) is obviously true if t is either 0 or 1, we may assume 0 < t < 1 so that z−x > 0.
We can divide both sides of the inequality (3) by z − x to obtain mx,z ≤ mx,y. Clearly, these
steps are reversible.

(a) ⇐⇒ (c): We write (a) as f(z)− f(y) ≤ (1− t)[f(x)− f(y)]. Proceeding as above we
get the result.

Theorem 5. A differentiable function f on an interval I is convex iff f ′ is non-decreasing
on I.

Proof. Assume first that f is differentiable and convex on I. Let x, y ∈ I with x < y. By the
above lemma, for any z ∈ [x, y], we have

mx,z ≤ mx,y ≤ mz,y.

Letting z decrease to x in the first inequality yields f ′(x) ≤ mx,y. Letting z increase to y in
the second inequality yields mx,y ≤ f ′(y). Hence f ′(x) ≤ f ′(y). That is, f ′ is non-decreasing.

Let us assume that f is differentiable and f ′ is non-decreasing. If f ′ were not convex, then
by the lemma, there exist points x < z < y in I such that mx,z > mx,y and mx,y > mz,y. (Is
this clear why such points exist? Think carefully.) By the mean value theorem, there exist
points u and v with x < u < z and z < v < y such that f ′(u) = mx,z and f ′(v) = mz,y.
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But then f ′(u) > f ′(v) and hence f ′ is not non-decreasing. This contradicts our hypothesis.
Hence we conclude that f is convex.

Corollary 6. Let f : I → R be twice differentiable. Then f is convex iff f ′′ is nonnegative
on I.

If f ′′ > 0, then f is strictly convex.

Proof. If f ′′ > 0 and if it were not strictly convex, then there exist points x, y ∈ I and a
t ∈ (0, 1) such that if z := (1 − t)x + ty then f(z) = (1 − t)f(x) + tf(y). That is, the
points (x, f(x)), (y, f(y)) and (z, f(z)) are collinear. By Rolle’s theorem, there exist points
u and v with u < v and such that f ′(u) = f ′(v). But then there exists w ∈ (u, v) such that
f ′′(w) = 0.

Since Corollary 6 is the most useful one, we give a more direct proof of it in the following

Theorem 7. Let J be an open interval in R. Assume that f : J → R is twice differentiable.
Then f is convex iff f ′′(x) ≥ for all x ∈ J .

Proof. We prove the necessity part. Let a ∈ J . Let h is such that a − h, a + h ∈ J . Then
a = [(a+ h) + (a− h)]/2. Since f is convex on J , we have

f(a) = f(
a+ h

2
+
a− h

2
) ≤

1

2
f(a+ h) +

1

2
f(a− h).

It follows that
f(a+ h)− 2f(a) + f(a− h) ≥ 0.

Since h2 ≥ 0, it follows from (6) in Ex. 8 below that f ′′(a) ≥ 0.

We now prove the sufficiency part using Taylor’s theorem. Let x, y ∈ J and 0 < t < 1.
Let z = (1− t)x+ ty. We apply Taylor’s theorem to f at z to find a point c1 between x and
z such that

f(x) = f(z) + f ′(z)(x − z) +
1

2
f ′′(c1)(x− z)2. (4)

Similarly there exists c2 between y and z such that

f(y) = f(z) + f ′(z)(y − z) +
1

2
f ′′(c1)(y − z)2. (5)

Using (4) and (5), we obtain

(1− t)f(x) + tf(y) = f(z) + f ′(z)[(1 − t)x+ ty − z]

+
1

2
(1− t)f ′′(c1)(x− z)2

+
1

2
tf ′′(c2)(y − z)2

= f(z) +
1

2
(1− t)f ′′(c1)(x− z)2 +

1

2
tf ′′(c2)(y − z)2

≥ f(z) = f((1− t)x+ ty).

Hence f is convex.
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Ex. 8. Let f : J → R be such that f ′′(a) exists. Then

f ′′(a) := lim
h→0

f(x+ h)− 2f(x) + f(x− h)

h2
. (6)

Give an example to show that the converse if not true.

Corollary 6 (that is, Theorem 7) gives a lot of examples of convex functions.

Ex. 9. Prove the following:
(i) ex is (strictly) convex on R.
(ii) xα is convex on (0,∞) for α ≥ 1.
(iii) −xα is strictly convex on (0,∞) for 0 < α < 1.
(iv)) x log x is strictly convex on (0, ?).
(v) f(x) = x4 is strictly convex but f ′′(0) = 0.
(vi) f(x) = x+ (1/x) is convex on (0,∞).
(vii) f(x) = 1/x is convex on (0,∞).

Ex. 10. Let f, g be convex functions and α ∈ R. Which of the functions f + g, αf and f · g
are convex?

Ex. 11. Let f : [a, b] → R be convex. Prove that the maximum of f on [a, b] is either f(a)
or f(b).

Ex. 12. Let f be twice differentiable with f ′′ ≥ 0 on an interval [a, b]. What is the maximum
possible value of f((a+ b)/2)? For what functions, this bound is attained?

Ex. 13. Which polynomials of odd degree are convex on R?

Ex. 14. Characterize the fourth degree polynomials that are convex on R by giving a
necessary and sufficient condition on the coefficients.

Ex. 15. Let f : [a, b] → R be continuous and increasing. Then g(x) :=
∫ x
a f(t) dt is convex

on [a, b].

We now make a geometric observation which paves the way for defining convex functions
on more general spaces, say, for example, on Riemannian manifolds.

Proposition 16. Let f be convex and differentiable on (a, b). If y ∈ (a, b), then f(x)−f(y) ≥
f ′(y)(x− y), for all x ∈ (a, b).

Remark 17. The geometric interpretation of this is that the graph of the function lies above
any tangent drawn to the graph. See Fig. 3. This suggests the following definition.

Let ϕ : (a, b) → R be convex and α ∈ (a, b). A supporting line is a line y =M(x−α)+ϕ(α)
passing through the point (α,ϕ(α)) and such that it always lies below the graph of ϕ, i.e., is
such that

ϕ(x) ≥M(x− α) + ϕ(α), for all x ∈ (a, b).

Hence, Proposition 16 tells us that if ϕ is differentiable, then the tangent line to the graph
at (α,ϕ(α)) is a supporting line at that point.

In fact, existence of supporting lines at each point of the graph is the characterizing
property of convex functions.
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(x, f(x))

Figure: 3

Proof. By mean value theorem, there exists z between x and y such that f(x)−f(y)
x−y = f ′(z).

Since f is convex, f ′ increases. Hence f ′(z) ≥ f ′(y) if x > y or f ′(z) ≤ f ′(y) if x < y.

Ex. 18. Use Prop. 16 to justify the Newton-Raphson method: Let φ : R → R be a
strictly increasing, convex, differentiable function on R. Assume that φ(x) = 0. If x1 > x,
and xn is defined inductively as

xn = xn−1 −
φ(xn−1)

φ′(xn−1)
,

then show that xn → x as n→ ∞. See Fig. 4.

x x3

(x3, f(x3))

x1

(x1, f(x1))

x2

(x2, f(x2))

Ex. 19. Assume f is differentiable and convex on R. If f is bounded then f is a constant.

Lemma 20. Let ψ : (a, b) → R be convex. Let t ∈ (a, b). Then there exists a supporting line
to the graph of ψ at the point (t, ψ(t)).
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Remark 21. In fact, Lemma 23 tells us the right and left hand derivatives exist at each
point of the domain of a convex function. In light of it, we see that any line passing through
the point of the graph and whose slope lies between the one-sided derivatives at the point is
a supporting line at that point. The following proof is a direct attack on the problem.

Proof. Let

M := sup
s∈(a,t)

{
ψ(t)− ψ(s)

t− s

}

. (7)

Let u ∈ (t, b). From Lemma 4, we have

M ≤
ψ(u) − ψ(t)

u− t
. (8)

Then (8) implies
ψ(u) ≥M(u− t) + ψ(t), t ≤ u ≤ b, (9)

and (7) implies
ψ(s) ≥M(s − t) + ψ(t), ≤ s ≤ t. (10)

Then (9) and (10) imply that

ψ(x) ≥ ψ(t) +M(x− t) for any x ∈ (a, b) (11)

Proposition 22. If f : (a, b) → R is convex and c ∈ (a, b) is a local minimum, then c is a
minimum for f on (a, b). That is, local minima of convex functions are global minima.

Proof. Recall that c is a local minimum for f if and only if there exists ε > 0 such that
f(x) ≥ f(c) for all x ∈ (c− ε, c+ ε) ⊆ (a, b).

If c were not a point of global minimum, there exists a d ∈ (a, b) (d ≤ c or d ≥ c with
f(d) < f(c). Consider the curve c(t) = (1− t)c+ td. Then c(0) = c, c(1) = d and

f(c(t)) ≤ (1− t)f(c) + tf(d)

< (1− t)f(c) + tf(c), t 6= 0

= f(c) for all t ∈ (0, 1 ] (12)

But for t sufficiently small, c(t) ∈ (c− ε, c+ ε) so that

f(c(t)) ≥ f(c) for 0 < t < ε.

which contradicts (12).

Lemma 23. Let f be convex on an open interval I. Then the limits

lim
h→0−

f(x+ h)− f(x)

h
and lim

h→0+

f(x+ h)− f(x)

h

both exist for every x ∈ I. Thus f has both right and left side derivatives on I.
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Proof. Let h1, h2 ∈ R be such that 0 < h1 < h2. Using Lemma 4, we get

f(x+ h1)− f(x)

h1
≤
f(x+ h2)− f(x)

h2

Thus if we define the function

F (h) :=
f(x+ h)− f(x)

h

then F (h1) ≤ F (h2) if 0 < h1 < h2, i.e., F increases on (0, δ) for all δ sufficiently small.
Hence limh→0+ F (h) exists. (Why?)

Example 24. What is the relevance of the function f(x) := |x| to the above lemma?

Theorem 25. Let f be convex on the open interval I. Then f is continuous on I.

Proof. By the above lemma, we have

lim
h→0−

[f(x+ h)− f(x)] = lim
h→0−

f(x+ h)− f(x)

h
{ lim
h→0−

h}

= 0.

Similarly limh→0+[f(x+ h)− f(x)] = 0.

Ex. 26. What can you say when the interval I in the theorem is not open?

Proposition 27. A continuous function f : I → R is convex iff it is midpoint convex, i.e. iff

f(
x+ y

2
) ≤

1

2
[f(x) + f(y)] for all x, y ∈ I.

Proof. By the inequality 2 we have

f(
x1 + · · ·+ xn

n
) ≤

1

n
[f(x1) + · · ·+ f(xn)], xi ∈ I. (13)

Let r be rational, 0 < r < 1. Write r = m
n . If s = 1 − r, then s = n−m

n . We apply (13)
with x1 = x2 = · · · = xm = x, xm+1 = · · · = xn = y. Then

f(rx+ sy) = f(
m

n
x+

n−m

n
y)

= f(
mx+ (n−m)y

n
)

= f(

m times
︷ ︸︸ ︷

x+ · · · + x+

n−m times
︷ ︸︸ ︷

y + · · ·+ y

n
)

≤
1

n
[

m times
︷ ︸︸ ︷

f(x) + · · ·+ f(x) +

n−m times
︷ ︸︸ ︷

f(y) + · · ·+ f(y)]

=
1

n
[mf(x) + (n −m)f(y)]

= rf(x) + sf(y). (14)
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If α is irrational, consider a sequence {αn} of rational numbers such that αn → α. Then
βn = 1− αn → 1− α = β as n→ ∞. We have

f(αnx+ βny) ≤ αnf(x) + βnf(y), n ∈ N. (15)

Since f is continuous, taking limits on both sides of (15), we see that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y).

That is, f is convex.

Project. A function f : I → R is said to be concave if the inequality (1) is reversed. Find
examples of concave functions. Formulate results (analogous to those for convex functions)
for concave functions. Prove them.

2 Applications: Inequalities

The most important use of the theory of convex functions is the derivation of inequalities.
We start with a most important inequality, second only to the triangle inequality.

Ex. 28 (Arithmetic Mean and Geometric Mean Inequality). Let αj ≥ 0 for 1 ≤ j ≤ n. Then
the arithmetic mean of these numbers is α1+···+αn

n , and their geometric mean is the positive

n-th root of their product, viz. (α1 · · ·αn)
1/n. Then we have

(α1 · · ·αn)
1/n ≤

1

n
(α1 + · · ·+ αn). (16)

Equality holds iff αj are equal. Hint: Write αj = exj and apply the inequality 2 in Jensen’s
theorem to the strictly convex function ex.

Ex. 29. Generalized AM-GM Inequality. Let xi ∈ R, xi ≥ 0. Let αi ∈ R, αi > 0 such
that

∑
αi = 1. Then

xα1

1 · · · xαn
n ≤ α1x1 + · · ·+ αnxn. (17)

Equality holds iff all xj are equal. Hint: Let yi := log xi and f(t) = et.

Ex. 30. Deduce the standard AM-GM Inequality as a special case of the generalized AM-GM
inequality (29).

Ex. 31. Young’s Inequality. Yet another special case of the generalized AM-GM inequal-
ity:

xy ≤
xp

p
+
yq

q
, for positive x, y and p > 1. (18)

Equality holds iff xp = yq.

Let α1 = 1
p and α2 = 1

q , where p > 1 and 1
p + 1

q = 1, i.e. 1
q = 1− 1

p = p−q
p . Take x1 = xp

and x2 = yq in the inequality 29.

You may also directly derive this inequality as follows: Write x = ea/p and y = eb/p and
use the convexity of et.
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Ex. 32. This is a special case of the inequality (18). Put a = xp, b = yq to get

a
1

p · b
1

q ≤
a

p
+
b

q
. (19)

Equality holds iff a = b.

Ex. 33. Hölder’s Inequality. Let p > 1. Let q be defined by the equation: 1
p +

1
q = 1. We

prove first the discrete version of Hölder’s inequality:

n∑

j=1

|zj ||wj | ≤ (

n∑

j=1

|zj |
p)1/p(

n∑

j=1

|wj |
q)1/q, z, w ∈ C

n. (20)

Equality holds iff there exists a nonnegative constant λ such that |zj |
p = λ|wj|

q for 1 ≤ j ≤ n.
Hint: Let ‖z‖p := (

∑n
j=1 |zj |

p)1/p and ‖w‖q := (
∑n

j=1 |wj |
q)1/q. We apply the inequality (18)

to x =
|zj |
‖z ‖p

and y =
|wj|
‖w‖q

and sum over the index j. We get the result upon simplification.

We also have a continuous version of Hölder’s inequality: Let f, g ∈ C[0, 1]. Let ‖f ‖p :=

[
∫ 1
0 |f |p]

1

p etc. Then we have, for f, g ∈ C[0, 1],

∫ 1

0
|fg| ≤ ‖f ‖p ‖g‖q . (21)

Equality holds iff there exists α, β not both zero in R such that αfp+βgq ≡ 0 on [0, 1]. Hint:

Take a = |f |
‖f ‖p

, b = |g|
‖g‖q

. Apply the inequality 18 to this and integrate over the interval to

get Holder’s inequality.

The case p = 2 is known as the (Cauchy-) Schwarz inequality.

Ex. 34 (Minkowski’s Inequality). Let the notation be as in the Hölder’s inequality. We have

‖z + w‖p ≤ ‖z‖p + ‖w‖p , z, w ∈ C
n, p > 1. (22)

Equality holds iff there exists a nonnegative λ such that wj = λzj for 1 ≤ j ≤ n. Hint: Let
α := ‖z‖p and β := ‖w‖p. Let aj and bj be defined by |zj | = αaj and |wj | = βbj . Then
‖a‖p = 1 = ‖b‖p. If we take t = α/(α + β), then 1− t = β/(α+ β). We have

|zj + wj |
p ≤ (|zj |+ |wj |)

p

= [αaj + βbj ]
p

≤ (α + β)p[taj + (1− t)bj ]
p

≤ (α + β)ptapj + (1− t)bpj ,

by the convexity of the function ϕ(t) = tp on [0,∞) for p > 1. Summing both the extreme
sides of the above inequality will yield the result ‖z + w‖pp ≤ (‖z‖p + ‖w‖p)

p.

We can derive Minkowski’s inequality from Hólder’s as follows:

|zj + wj |
p = |zj + wj|

p−1|zj + wj|

≤ |zj + wj|
p−1|zj |+ |zj + wj |

p−1|wj |
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Summing over j, we get
∑

j

|zj + wj |
p ≤

∑

j

|zj + wj|
p−1|zj |+

∑

j

|zj + wj |
p−1|wj |.

Apply Hölder’s inequality to the two sums on right side with exponents q and p respectively
and simplify the result.

Ex. 35. Formulate and prove a continuous version of Minkowski’s inequality.

Theorem 36 (Jensen’s Inequality). Let f : [0, 1] → (a, b) be a continuous function. Assume
that ψ : (a, b) → R is continuous and convex. Then

ψ(

∫ 1

0
f(t)dt) ≤

∫ 1

0
(ψ ◦ f)(t)dt.

Proof. Since ψ ◦ f ∈ C[0, 1], the right hand side of the inequality makes sense. Let α :=
∫ 1
0 f(r)dr. Then α ∈ (a, b). By Lemma 20, there exists a constant M such that

ψ(x) ≥ ψ(α) +M(x− α) for any x ∈ (a, b) (23)

Now we take x = f(r) for r ∈ [0, 1] and get from (23)

ψ ◦ f(r) ≥ ψ(α) +M(f(r)− α). (24)

We integrate (24) and simplify the result to get Jensen’s inequality.

Ex. 37. One can view the inequality of Jensen’s theorem (Eq. 2) as the discrete version
of Jensen’s inequality: Hint: We use the notation of Eq. 2. Let α :=

∑

j tjxj. Consider a
supporting function at (α, f(α)) and proceed as in the continuous version.

Ex. 38 (Hadamard’s Inequality). Let f : (0, 1) → R be continuous and convex. Then

f(1/2) ≤

∫ 1

0
f(t) dt.

There is a physical interpretation of this inequality: Let f(t) be the velocity of a particle
moving along a straight line with an increasing acceleration from time t = 0 to time t = 1.
Then its velocity at t = 1/2 cannot exceed the average velocity of the entire trip.

Acknowledgements: I thank Mr. Ajit Kumar for drawing the pictures and for a critical
reading of the earlier versions.

This article is an expanded version of the lectures given at S.P. College, Pune on February
9, 1999.
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