A Lemma from Linear Algebra – Lagrange Mutipliers

S. Kumaresan School of Math. and Stat. University of Hyderabad Hyderabad 500046 kumaresa@gmail.com

Theorem 1. Let $A =$ $\sqrt{ }$ $\overline{}$ A_1 $A₂$. . . A_n \setminus $\Bigg\} : \mathbb{R}^m \to \mathbb{R}^n$ be a linear map induced by the $n \times m$ matrix A

whose rows are A_i , $1 \leq i \leq n$. Let $f: \mathbb{R}^m \to \mathbb{R}$ be a linear map. Let $\alpha \in \mathbb{R}^m$ be the gradient of f, that is, the unique (row) vector α such that $f(x) = \alpha \cdot x$ for $x \in \mathbb{R}^m$. Then ker $A \subset \text{ker } f$ iff there exists scalars $\lambda_i \in \mathbb{R}$, $1 \leq i \leq n$, such that $\alpha = \lambda_1 A_1 + \cdots + \lambda_n A_n$.

Proof. Let k be the rank of A. Asssume, without loss of generality, that A_1, \ldots, A_k are (maximally) linearly independent. Define a $k \times m$ matrix A' whose rows are A_i , $1 \le i \le k$.

We claim: the kernels of the linear maps $A: \mathbb{R}^m \to \mathbb{R}^n$ and $A': \mathbb{R}^m \to \mathbb{R}^k$ are the same. Note that if $x \in \mathbb{R}^m$ is a (column) vector, then Ax is the column vector with *i*-th coordinate $A_i \cdot x, 1 \leq i \leq n$. Similarly, $A'x$ is the column vector whose j-th coordinate is $A_j \cdot x, 1 \leq j \leq k$. From this description, the claim is clear. For, if $A'x = 0$, then $A_i \cdot x = 0$ for $j = 1, \ldots k$. Hence if we write $A_r = c_{r1}A_1 + \cdots + c_{rk}A_k$, where $k+1 \leq r \leq n$, then $A_r \cdot x = 0$. Hence $\ker A' \subset \ker A$. The other inclsuion is easy.

Suppose α is a not a linear combination of A_i , $1 \leq i \leq n$. Then it is not a lineat combination of A_j , $1 \leq j \leq n$. Hence the matrix B whose rows (in order) are A_1, \ldots, A_k, α has rank $k+1$ and hence as a linear map $B: \mathbb{R}^m \to \mathbb{R}^{k+1}$ is onto. In particular, there exists a vector $v \in \mathbb{R}^m$ such that $Bv = e_{k+1}$. This means that $A'v = 0$ and $\alpha \cdot v = 1$, that is, $v \in \text{ker } A$ and $v \notin \text{ker } f$, a contradiction. Hence α is a linear combination of A_i 's. \Box