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Theorem 1. Let g: Q C R"F = R¥ be C1. Assume that S := g~1(0) be nonempty and that
for every p € S, Dg(p) is of rank k. We define the tangent space T,S of S at p to be the
set of all vectors w € R™* such that there exists a map c defined on some neighbourhood of
0 € R to S which is C* as a map from the interval to R"** with ¢(0) = p and ¢(0) = w.
Such a map is called a C' curve through p in S. Thus,

T,S == {w e R"™:3c>0& c: (—¢,6) = S € R"* such that ¢(0) = p & ¢/(0) = w}.

We call the elements of T,,S tangent vectors to S at p. We have T),S = kernel of Dg(p). In
particular, T),S is a vector space of dimension n.

Proof. Tt is easy to show that any tangent vector ¢/(0) at p lies in the kernel of Dg(p). For, let
c: (—&,e) = S be a curve through p, i.e., a C! map with ¢(0) = p. The C'-function o := goc
is then a constant so that ¢’(0) = 0. By chain rule we find that Dg(p)(¢/(0)) = 0. Thus, 7,5
is contained in the kernel of Dg(p).

To prove the converse, let w € R™* be given such that Dg(p)(w) = 0. Since by hy-
pothesis, Dg(p) is of rank k, we may assume (permuting the coordinates if necessary) that

(&fgi ) is invertible. For ease of notation, let us write for z € Q, z = (z,y) € R" x R,
ntd ) 1<i,j<

Let p = (a,b) and w = (u,v).

We wish to use the implicit function theorem. We repeat part of the argument of its proof
to fix the notation. Let G(x,y) := (x,g(x,y)). Then DG(p) is invertible and there exist
neighbourhoods U of p in R"** and V of a in R” and a C'-function h : V' — R* such that

(i) h(a) =b.

(i) {z € Q: G(z,y) =0} = {(z,h(x)) :z €V}
so that g(x,h(x)) = 0 for all z € V. In particular, the portion S N U of the surface S is
parameterized by V.

We consider the curve y(t) := a + tu. Since V' is open for sufficiently small |t], v(t) € V.
Let c(t) := G~1(v(t),0). Since G is a C'-diffeomorphism, cis C*. Also, ¢(0) = G~1(7(0),0) =
G~ (a,0) = (a,b) = p.

We claim that ¢/(0) = w.



Now, by chain rule, we have ¢/(0) = DG~1(7(0),0) o+ (0) = DG~(a,0)(u,0). To prove
the claim, it is enough to show that DG(p)(u,v) = (u,0), as DG~1(a,0) = DG(a,b)~ L. Tt is
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since Dg(p)(w) = 0. O

A special case worth noting is when g takes values only in R. Then, in that case, the
condition on Dg(p) # 0 for all p € S is equivalent to requiring that Vg(p) # 0 for all p € S.
(Here Vh(z) = ((%‘1, e é%) for any differentiable function h: U C R™ — R. Recall that
the derivative Dh(z): R™ — R is a linear functional given by Dh(z)v = (v, Vh(z)).) Note
also that in this case, the vector space T},S is the orthogonal complement of Vg(p) in R 1,
That is why Vg is called the normal to the “hypersurface” S.

More generally, if g is as in the theorem, we write g = (g1,...,9x). We then note that
v € TS iff (v, Vg;(p)) =0 for 1 <i < k. We say a vector w € R"** is normal to the surface
S at the point p € S iff (w,v) =0 for v € T,,S. Thus, the set of vectors normal to S at p is a
vector subspace of R"** and has {Vg;(p) : 1 <i < k}.

Let M be a smooth hypersurface in R"*! defined by g = 0. This means that M :=
{r € R*"! : g(x) = 0} and that g : R""! — R is a C!-function such that Dg(z) # 0 for
any x € M. If f is a smooth function on M, we want to investigate conditions for local
extremum. Let p € M be a local extremum for f. If v: (—e,6) — M is a smooth curve
through p, i.e., 7(0) = p, then fo~: R — R has a local extremum at 0. Hence by calculus,
we have (f ov)’(0) = 0. That is,

7 (0)(f) = (+(0), V£ (p)) = 0. (1)
Since 7/(0) is a tangent vector to M at p, we know that
(7'(0),Vg(p)) =0. (2)

Now Eq. 1 and Eq. 2 imply that V f(p) = AVg(p) for some real number A. A is called the
Lagrange multiplier. The above can very easily be generalized for submanifolds which are
not necessarily hypersurfaces and which are defined by the equation g = 0 where g satisfies
the conditions of Theorem 1. In classical language the above problem is posed as follows:
Find extremum of a function f subject to the constraints g;(z) = 0 for 1 < i < k. Here
n =n+k — k is the dimension of the submanifold and we assume that it is defined by g; = 0.



In this case the Lagrange multipliers A; at an extremum are given by

Vfp) = Z AiVgi(p).

We wish to show an interesting application of this method of Lagrange multiplier to a
problem in Linear algebra or in Analytic Geometry depending on one’s perspective.

Theorem 2. Given an n X n real symmetric matriz A, there exists an orthogonal matriz U
such that U=YAU = D, where D is a diagonal matriz diag (A1, ..., ).

Proof. We consider the function g(z) := 2 Ax := (Az,z) for x € S := §"~1. Here (,) is the
Euclidean inner product on R™ and

Sl g e R": f(z) := (x,z) = 1},

the unit sphere in R™®. As S" ! is closed and bounded, it is compact. Hence the continuous
function ¢ attains a maximum on S. Let v; € S be he point where maximum is attained.
We have Vg(z) = 2Az since Dg(x)(h) = 2 (Az,h). Also, we have V f(x) = 2]z = 2x. Hence
by Lagrange multiplier there exists A\; € R such that Vg(v1) = AV f(v1). That is, we have
Av; = Ay or v; is an eigen value of A. Moreover, we notice that A\; = (Avy,v1) so that A\
is the maximum value of g on S.

Let Ey := (Ruvp)t, the orthogonal complement of the one dimensional subspace Ruv; of
Ep := R™. We now restrict the function g to the unit sphere in ;. That is, the variable x is
constrained by (r,z) = 1 and (x,v1) = 0. As above the function g attains a maximum at a
point vy € S"2 C E;. Then vy satisfies

Avg — Aovg — oqv1 =0 (3)

for some real numbers Ay and o;. (Can you derive this?) We take inner product of both sides
of Eq. 3 with v to get:
(Avg,v2) — Ay — o1 (v1,v2) = 0.

Thus Ao = (Ave, v2) so that Ay is the maximum of g on the unit sphere of E;. Also, we have
A1 > Ag. We now take inner product of Eq. 3 with v; to get

(Avg,v1) — A2 (v2,v1) — o1 (v1,v1) = 0.
Hence we deduce that
o1 = (Avg,v1) = (vg, Avy) = (v, \yv1) = 0.
Therefore from Eq. 3 we see that vy satisfies Avy = A\gvo. Hence Mg is an eigenvalue of A.

We can thus proceed upto n — 1 steps so that we get eigen vectors v; of unit norm with
eigen values \; for 1 <i < n—1. We then consider g on SO, which is a set of two unit vectors.
Hence g has maximum say at vy, with (v,,v;) =0 for 1 <i <n—1. We set A\, := (Avy, vy).
Then A\; > A9 > --- > \,. Notice that {v; : 1 <i < n} forms an orthonormal basis for R".
Hence we can write Av, = > | a;v;, where a; = (Avy,v;) = A; (vn,v;) = 0 for i < n and
an = Ap. Thus A, is also an eigen value of A. We have therefore diagonalised the symmetric
matrix A. ]



Remark How is the above a result in analytic geometry? You can think of the set {x € R™ :
g(x) = 1} as a quadric surface. Thus what we have done above is to find the principal axes
of this quadric surface.

Exercises

1) Find the maximum of (123 - - - x,,)? subject to the constraint > 7 27 = 1. Use this to show
AM > GM. This can also be derived by searching for the maximum of g(z) = x1 + -+ + x5,
with the constraint f(x) =z - 2, = 1.

2) Let A = det(z;;) be the determinant of a real n x n matrix (x;;). Let v; := (zi1, ..., Timn),
the i-th row vector. Let d? := |v;||>. We indicate a proof of the following famous result of
Hadamard:

AP < d?---d2.

Let ri(z) :== (32 $?j)1/2 be the norm of the i-th row vector. Let d; > 0 be given. We wish to
find the maximum of f(z) := det(x) subject to the constraints g;(x) := r;(z)? — d? = 0. Note
that we have

f@)=zaXa + -+ 2 Xin.
Here, as is customary, X;; stands for the cofactor of x;;. Thus if a is a point where a maximum
is attained, then
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Thus the Lagrange conditions are
Aij + 2)\Z-aij =0, for all 4, j (4)

Multiplying Eq. 4 by a;; and summing w.r.t. j we get

D aijAy +20 > al=gla)+2\d; =0 foralli. (5)
J J

Multiplying Eq. 5 by a;; we get
aijg(a) + 2a;;\d? = 0 for all i, j. (6)
Combining Eq. 4 and Eq. 6 we get
aijg(a) = Aid;. (7)
We take b := (b;;) where b;j; := Aj;. Then ab = g(a)l so that taking determinants (i.e.,
applying ¢) on both sides yields:

9(a)" = g(ab) = g(a)g(b) = g(a) (H gé?) g(a). (8)
1 i

Hence we get (g(a))? = d? - - d2

n:



There is a very nice geometric interpretation of this result. First of all an observation.
Since Ajag + - -+ Aippagy, = 0 for @ # k and since a;; is proportional to A;; we see that the
rows of a are orthogonal:

aiagy + - -+ aipagy, = 0 for i # k.

Given n vectors v; := (2;1,. .., Zi,) we can think of the determinant det(z) := det(z;;) as an
oriented volume of the parallelepiped [v; ...v,] spanned by the n vectors v;. Let d; be given
positive constants. Hadamard’s inequality says that under the restriction that ||v; || = d;, the
volume (:= the absolute value of the oriented volume) is a maximum when the vectors are
orthogonal.

3) Show that the maximum area enclosed by a triangle of a given perimeter 2s is obtained by
the equilateral triangle. Hint: Use Heron’s formula:

A% =s(s —a)(s —b)(s —c).

4) Find the extrema of f(z,y) = 22—y on S := {22452 = 1}. Draw pictures and understand
the geometric meaning of your solution.

5) Show that for any a € R", we have

|a|| = max{a.z: || z| = 1}.

6) Let f(z) :==z1---zy. Find its extrema on

S::{:EER":ZJ:k:l, and xp > 0 for all k}.
k

Remark 3. This may be read in conjunction with my article on “Implicit Function Theorem.”



