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Theorem 1. Let g : Ω ⊂ Rn+k → Rk be C1. Assume that S := g−1(0) be nonempty and that
for every p ∈ S, Dg(p) is of rank k. We define the tangent space TpS of S at p to be the
set of all vectors w ∈ Rn+k such that there exists a map c defined on some neighbourhood of
0 ∈ R to S which is C1 as a map from the interval to Rn+k with c(0) = p and c′(0) = w.
Such a map is called a C1 curve through p in S. Thus,

TpS := {w ∈ Rn+k : ∃ ε > 0 & c : (−ε, ε)→ S ⊂ Rn+k such that c(0) = p & c′(0) = w}.

We call the elements of TpS tangent vectors to S at p. We have TpS = kernel of Dg(p). In
particular, TpS is a vector space of dimension n.

Proof. It is easy to show that any tangent vector c′(0) at p lies in the kernel of Dg(p). For, let
c : (−ε, ε)→ S be a curve through p, i.e., a C1 map with c(0) = p. The C1-function σ := g ◦ c
is then a constant so that σ′(0) = 0. By chain rule we find that Dg(p)(c′(0)) = 0. Thus, TpS
is contained in the kernel of Dg(p).

To prove the converse, let w ∈ Rn+k be given such that Dg(p)(w) = 0. Since by hy-
pothesis, Dg(p) is of rank k, we may assume (permuting the coordinates if necessary) that(

∂gi
∂xn+j

)
1≤i,j≤k

is invertible. For ease of notation, let us write for z ∈ Ω, z = (x, y) ∈ Rn×Rk.

Let p = (a, b) and w = (u, v).

We wish to use the implicit function theorem. We repeat part of the argument of its proof
to fix the notation. Let G(x, y) := (x, g(x, y)). Then DG(p) is invertible and there exist
neighbourhoods U of p in Rn+k and V of a in Rn and a C1-function h : V → Rk such that

(i) h(a) = b.
(ii) {z ∈ Ω : G(x, y) = 0} = {(x, h(x)) : x ∈ V }

so that g(x, h(x)) = 0 for all x ∈ V . In particular, the portion S ∩ U of the surface S is
parameterized by V .

We consider the curve γ(t) := a+ tu. Since V is open for sufficiently small |t|, γ(t) ∈ V .
Let c(t) := G−1(γ(t), 0). Since G is a C1-diffeomorphism, c is C1. Also, c(0) = G−1(γ(0), 0) =
G−1(a, 0) = (a, b) = p.

We claim that c′(0) = w.
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Now, by chain rule, we have c′(0) = DG−1(γ(0), 0) ◦ γ′(0) = DG−1(a, 0)(u, 0). To prove
the claim, it is enough to show that DG(p)(u, v) = (u, 0), as DG−1(a, 0) = DG(a, b)−1. It is

easily verified that DG(p)(u, v) =

(
In×n 0

Dg(p)

)(
u
v

)
=

(
u
0

)
; that is

DG(p)(u, v) =



1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0
...

...
. . .

...
...

. . .
...

0 0 . . . 1 0 . . . 0

∂g1
∂x1

. . . . . . ∂g1
∂xn

∂g1
∂y1

. . . ∂g1
∂yk

...
...

. . .
...

...
. . .

...

∂gk
∂x1

. . . . . . ∂gk
∂xn

∂gk
∂y1

. . . ∂gk
∂yk





u1
...
...
un
v1
...
...
vk


=

(
u
0

)

since Dg(p)(w) = 0.

A special case worth noting is when g takes values only in R. Then, in that case, the
condition on Dg(p) 6= 0 for all p ∈ S is equivalent to requiring that ∇g(p) 6= 0 for all p ∈ S.
(Here ∇h(x) := ( ∂h

∂x1
, . . . , ∂h

∂xn
) for any differentiable function h : U ⊂ Rn → R. Recall that

the derivative Dh(x) : Rn → R is a linear functional given by Dh(x)v = 〈v,∇h(x)〉.) Note
also that in this case, the vector space TpS is the orthogonal complement of ∇g(p) in Rn+1.
That is why ∇g is called the normal to the “hypersurface” S.

More generally, if g is as in the theorem, we write g = (g1, . . . , gk). We then note that
v ∈ TpS iff 〈v,∇gi(p)〉 = 0 for 1 ≤ i ≤ k. We say a vector w ∈ Rn+k is normal to the surface
S at the point p ∈ S iff 〈w, v〉 = 0 for v ∈ TpS. Thus, the set of vectors normal to S at p is a
vector subspace of Rn+k and has {∇gi(p) : 1 ≤ i ≤ k}.

Let M be a smooth hypersurface in Rn+1 defined by g = 0. This means that M :=
{x ∈ Rn+1 : g(x) = 0} and that g : Rn+1 → R is a C1-function such that Dg(x) 6= 0 for
any x ∈ M . If f is a smooth function on M , we want to investigate conditions for local
extremum. Let p ∈ M be a local extremum for f . If γ : (−ε, ε) → M is a smooth curve
through p, i.e., γ(0) = p, then f ◦ γ : R → R has a local extremum at 0. Hence by calculus,
we have (f ◦ γ)′(0) = 0. That is,

γ′(0)(f) :=
〈
γ′(0),∇f(p)

〉
= 0. (1)

Since γ′(0) is a tangent vector to M at p, we know that〈
γ′(0),∇g(p)

〉
= 0. (2)

Now Eq. 1 and Eq. 2 imply that ∇f(p) = λ∇g(p) for some real number λ. λ is called the
Lagrange multiplier. The above can very easily be generalized for submanifolds which are
not necessarily hypersurfaces and which are defined by the equation g = 0 where g satisfies
the conditions of Theorem 1. In classical language the above problem is posed as follows:
Find extremum of a function f subject to the constraints gi(x) = 0 for 1 ≤ i ≤ k. Here
n = n+ k− k is the dimension of the submanifold and we assume that it is defined by gi = 0.
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In this case the Lagrange multipliers λi at an extremum are given by

∇f(p) =
∑
i

λi∇gi(p).

We wish to show an interesting application of this method of Lagrange multiplier to a
problem in Linear algebra or in Analytic Geometry depending on one’s perspective.

Theorem 2. Given an n× n real symmetric matrix A, there exists an orthogonal matrix U
such that U−1AU = D, where D is a diagonal matrix diag (λ1, . . . , λn).

Proof. We consider the function g(x) := xtAx := 〈Ax, x〉 for x ∈ S := Sn−1. Here 〈, 〉 is the
Euclidean inner product on Rn and

Sn−1 := {x ∈ Rn : f(x) := 〈x, x〉 = 1},

the unit sphere in Rn. As Sn−1 is closed and bounded, it is compact. Hence the continuous
function g attains a maximum on S. Let v1 ∈ S be he point where maximum is attained.
We have ∇g(x) = 2Ax since Dg(x)(h) = 2 〈Ax, h〉. Also, we have ∇f(x) = 2Ix = 2x. Hence
by Lagrange multiplier there exists λ1 ∈ R such that ∇g(v1) = λ1∇f(v1). That is, we have
Av1 = λ1v1 or v1 is an eigen value of A. Moreover, we notice that λ1 = 〈Av1, v1〉 so that λ1
is the maximum value of g on S.

Let E1 := (Rv1)⊥, the orthogonal complement of the one dimensional subspace Rv1 of
E0 := Rn. We now restrict the function g to the unit sphere in E1. That is, the variable x is
constrained by 〈x, x〉 = 1 and 〈x, v1〉 = 0. As above the function g attains a maximum at a
point v2 ∈ Sn−2 ⊂ E1. Then v2 satisfies

Av2 − λ2v2 − σ1v1 = 0 (3)

for some real numbers λ2 and σ1. (Can you derive this?) We take inner product of both sides
of Eq. 3 with v2 to get:

〈Av2, v2〉 − λ2 − σ1 〈v1, v2〉 = 0.

Thus λ2 = 〈Av2, v2〉 so that λ2 is the maximum of g on the unit sphere of E1. Also, we have
λ1 ≥ λ2. We now take inner product of Eq. 3 with v1 to get

〈Av2, v1〉 − λ2 〈v2, v1〉 − σ1 〈v1, v1〉 = 0.

Hence we deduce that

σ1 = 〈Av2, v1〉 = 〈v2, Av1〉 = 〈v2, λ1v1〉 = 0.

Therefore from Eq. 3 we see that v2 satisfies Av2 = λ2v2. Hence λ2 is an eigenvalue of A.

We can thus proceed upto n − 1 steps so that we get eigen vectors vi of unit norm with
eigen values λi for 1 ≤ i ≤ n−1. We then consider g on S0, which is a set of two unit vectors.
Hence g has maximum say at vn, with 〈vn, vi〉 = 0 for 1 ≤ i ≤ n− 1. We set λn := 〈Avn, vn〉.
Then λ1 ≥ λ2 ≥ · · · ≥ λn. Notice that {vi : 1 ≤ i ≤ n} forms an orthonormal basis for Rn.
Hence we can write Avn =

∑n
i=1 aivi, where ai = 〈Avn, vi〉 = λi 〈vn, vi〉 = 0 for i < n and

an = λn. Thus λn is also an eigen value of A. We have therefore diagonalised the symmetric
matrix A.
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Remark How is the above a result in analytic geometry? You can think of the set {x ∈ Rn :
g(x) = 1} as a quadric surface. Thus what we have done above is to find the principal axes
of this quadric surface.

Exercises

1) Find the maximum of (x1x2 · · ·xn)2 subject to the constraint
∑n

1 x
2
i = 1. Use this to show

AM ≥ GM. This can also be derived by searching for the maximum of g(x) = x1 + · · ·+ xn
with the constraint f(x) := x1 · · ·xn = 1.

2) Let ∆ = det(xij) be the determinant of a real n× n matrix (xij). Let vi := (xi1, . . . , xin),
the i-th row vector. Let d2i := ‖vi‖2. We indicate a proof of the following famous result of
Hadamard:

|∆|2 ≤ d21 · · · d2n.

Let ri(x) := (
∑

j x
2
ij)

1/2 be the norm of the i-th row vector. Let di > 0 be given. We wish to

find the maximum of f(x) := det(x) subject to the constraints gi(x) := ri(x)2− d2i = 0. Note
that we have

f(x) = xi1Xi1 + · · ·+ xinXin.

Here, as is customary, Xij stands for the cofactor of xij . Thus if a is a point where a maximum
is attained, then

∂f

∂xij
(a) = Aij

∂gi
∂xij

(a) = 2aij

Thus the Lagrange conditions are

Aij + 2λiaij = 0, for all i, j (4)

Multiplying Eq. 4 by aij and summing w.r.t. j we get∑
j

aijAij + 2λi
∑
j

a2ij = g(a) + 2λid
2
i = 0 for all i. (5)

Multiplying Eq. 5 by aij we get

aijg(a) + 2aijλid
2
i = 0 for all i, j. (6)

Combining Eq. 4 and Eq. 6 we get

aijg(a) = Aijd
2
i . (7)

We take b := (bij) where bij := Aij . Then ab = g(a)I so that taking determinants (i.e.,
applying g) on both sides yields:

g(a)n = g(ab) = g(a)g(b) = g(a)

(
n∏
1

g(a)

d2i

)
g(a). (8)

Hence we get (g(a))2 = d21 · · · d2n.
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There is a very nice geometric interpretation of this result. First of all an observation.
Since Ai1ak1 + · · ·+Ainakn = 0 for i 6= k and since aij is proportional to Aij we see that the
rows of a are orthogonal:

ai1ak1 + · · ·+ ainakn = 0 for i 6= k.

Given n vectors vi := (xi1, . . . , xin) we can think of the determinant det(x) := det(xij) as an
oriented volume of the parallelepiped [v1 . . . vn] spanned by the n vectors vi. Let di be given
positive constants. Hadamard’s inequality says that under the restriction that ‖vi‖ = di, the
volume (:= the absolute value of the oriented volume) is a maximum when the vectors are
orthogonal.

3) Show that the maximum area enclosed by a triangle of a given perimeter 2s is obtained by
the equilateral triangle. Hint: Use Heron’s formula:

A2 = s(s− a)(s− b)(s− c).

4) Find the extrema of f(x, y) = x2−y2 on S := {x2+y2 = 1}. Draw pictures and understand
the geometric meaning of your solution.

5) Show that for any a ∈ Rn, we have

‖a‖ = max{a.x : ‖x‖ = 1}.

6) Let f(x) := x1 · · ·xn. Find its extrema on

S := {x ∈ Rn :
∑
k

xk = 1, and xk ≥ 0 for all k}.

Remark 3. This may be read in conjunction with my article on “Implicit Function Theorem.”
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