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Abstract

This starts with a review of improper integrals and applies the residue theorem trick
to compute five classes of real integrals. It also shows how the residue calculus is used in
th etheory of Laplace transform and Fourier transforms, a topic most often neglected in
standard books. Pictures are yet to be inserted. Picture!

1 Preliminaries on Improper Integrals

Definition 1. Let f : [a,∞) → R be given. We say that
∫∞
a f exists if

∫ R
a f exists for all

R ≥ a and if limR→∞
∫ R
a f exists. If the latter limit is s, we then say

∫∞
a f converges to s

and write
∫∞
a f = s. We similarly assign a meaning to

∫ a
−∞ g for g : (−∞, a) → R. Finally,

we say that
∫∞
−∞ f exists and is s if

∫ 0
−∞ f = s1 and

∫∞
0 f = s2 with s = s1 + s2.

The reader is advised to keep the analogous concept
∑∞

n=−∞ an in the following.

Ex. 2. Let f : R→ R be such that for any ε > 0, there exists R > 0 such that |f(x)−f(y)| < ε
whenever x > R and y > R. Then limx→∞ f(x) exists.

Proposition 3.
(1) If f is continuous and if

∫∞
a |f | exists, then

∫∞
a f exists.

(2) Let f and g be continuous. Assume that
∫∞
a g exists and that there exists a positive

constant such that 0 ≤ f(x) ≤ λg(x) for x ≥ a. Then
∫∞
a f exists.

(3) Let f : R → R be given. Then
∫∞
−∞ f = s iff for any ε > 0, there exists R > 0 such that

|
∫ b
−a f − s| < ε for a ≥ R and b ≥ R.

Proof. To prove a part of (3), let ε > 0 be given. Let R be chosen as per the condition. Then
for a, b > R, we have

|
∫ b

a
f | = |

∫ b

−R
−
∫ a

−R
f | < 2ε.

Thus,
∫∞

0 f converges, say, to s1. Similarly
∫ 0
−∞ f converges, say, to s2. It remains to show

that s1 + s2 = s. Given ε > 0, by the other part of (3), there exists R > 0 such that if A > R,

then |
∫ A
−A f − (s1 + s2)| < ε. Hence |s− (s1 + s2)| < ε.
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Ex. 4. Let f : R→ R be continuous such that there exist R > 0 and M such that |f(x)| ≤ M
|x|2

for all x with |x| ≥ R. Then
∫∞
−∞ f exists.

Definition 5. There is another way of assigning a meaning to
∫∞
−∞ f . We say that the Cauchy

principal value of the integral is L if
∫ R
−R f exists for all R and limR→∞

∫ R
−R f = L. In such a

case, we write P.V.
∫∞
−∞ f = L. The next few exercises clarify the relation between these two

concepts.

Ex. 6. Let f : R→ R be any odd continuous function: f(−x) = −f(x) for all x ∈ R. Then
P.V.

∫∞
−∞ f = 0. In particular,

∫∞
−∞ x is not convergent but its Cauchy principal value exists.

Ex. 7. Let f : R→ R be even: f(−x) = f(x) for all x ∈ R. Assume that the principal value

P.V.
∫∞
−∞ f exists. Then

∫∞
−∞ f exists. Hint:

∫ 0
−R f =

∫ R
0 f = 1

2

∫ R
−R f .

Ex. 8. Let
∫∞
−∞ f exist. Then P.V.

∫∞
−∞ f =

∫∞
−∞ f .

Remark 9. Most often, we may first of all establish the convergence of
∫∞
−∞ f and then

compute P.V.
∫∞
−∞ f . In view of Ex. 8, we then would have computed

∫∞
−∞ f .

There is another kind of improper integrals: these are the ones where the integrand
becomes infinite at some points of the interval of integration. Let f be piecewise continuous

on [a, b], except, say, at c ∈ [a, b]. If the limits limε→0+

∫ c−ε
a f(x) dx and lim

δ→0+

∫ b

c+δ
f(x) dx

exist, we then define∫ b

a
f(x) dx := lim

ε→0+

∫ c−ε

a
f(x) dx+ lim

δ→0+

∫ b

c+δ
f(x) dx.

The integral is then called an improper integral.

Ex. 10. Define the analogous notion of principal value of such type of integrals.

Ex. 11. How do you define
∫ b
a f(x) dx if f becomes infinite at some point?

Example 12. The integral
∫ 1
−1

1
x does not exist but the principal value

P.V.

∫ 1

−1

1

x
exists and is 0.

What is the principal value of
∫ 2
−1

1
x dx?
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2 Evaluation of Real Integrals – Type 1

Integrals of the form
∫∞
−∞ f where |f(x)| ≤ C

|x|2 for |x| very large. We start with a simplest

example.

Example 13. Let us consider
∫∞
−∞

1
1+x2

. By Ex. 4,
∫
R f exists. Let f(z) := 1

1+z2
. The

poles of f are at z = ±i. Let CR be the closed path: the line segment [−R,R] followed by
γR(t) := Reit, 0 ≤ t ≤ π.

If R > 1, then the pole z = i is inside γ. Hence by the residue theorem we have∫
CR

f = 2πiRes (f ; i) = 2πi× 1

2i
.

Now,
∫
CR

f =
∫ R
−R

1
1+x2

+
∫
γR
f . We claim that the second integral on the right goes to 0, as

R → ∞. The result then follows from Remark 9. Now, the claim follows from the estimate
below:

|
∫
γR

f(z) dz| = |
∫ π

0

iReiθ

1 +R2e2iθ
dθ|

≤
∫ π

0

R

R2 − 1
dθ.

Example 14. Consider
∫∞
−∞

x2

(x2+a2)2
dx,where a > 0. We let f(z) := z2

(z2+a2)2
. Then f has

poles at z = ±ia. We find Res (f ; ia) = 1
4ia . If CR is as in Example 13 with R > a, we then

have ∫
CR

f = 2πiRes (f ; ia) = 2πi× 1

4ia
.

It is easy to show that
∫
γR
f → 0 as R→∞. We conclude that

∫∞
−∞

x2

(x2+a2)2
= π

2a . (How?)

These examples suggest the following result whose proof is left to the reader.

Theorem 15. Let f be holomorphic on C except at a finite number of points, none of which
are real and that those in the upper half plane {z ∈ C : Im z > 0} are z1, . . . , zn. Assume that
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there exist positive constants R and M such that |z2f(z)| ≤M for |z| ≥ R. Then∫ ∞
−∞

f = 2πi×
n∑
k=1

Res (f ; zk).

Ex. 16. Prove the following.

(1)
∫∞
−∞

dx
(1+x2)n+1 = π · (2n)!

22n(n!)2
.

(2)
∫∞

0
1

(1+x2)2(x2+4)
dx = π

6 .

(3)
∫∞

0
1

1+xn dx = π/n
sin(π/n) . Deduce

∫∞
0

dx
1+x2n

= π
2n sin π

2n
.

(4)
∫∞

0
2x2−1

x4+5x2+4
= π

4 .

Example 17. The integral
∫∞
−∞

cosx
x2+a2

exists, for a > 0. The obvious choice f(z) := cos z
z2+a2

is

bad. We consider f(z) := eiz

z2+a2
. Let CR be as earlier. Then the only pole inside CR is at

z = ia, since a > 0. The residue Res (f ; ia) = e−a

2ia . Proceeding as usual, we see that the given

real integral converges to πe−a

a , provided that we show that
∫
γR
f → 0 as R→∞. On γR, we

note that |eiz| = e−y ≤ 1 so that

|
∫
γR

eiz

z2 + a2
| ≤ πR 1

R2 − a2
, for R > a

which is what we wanted. Note that had we chosen cos in place of eiz, we would be in trouble,
since | cos z| becomes large when Im z is large.

We deduce that
∫∞
−∞

cos 2x
1+x2

= π
e2

and
∫∞
−∞

sin 2x
1+x2

= 0. (To prove the second, do you need
residue theory?)

Example 18.
∫∞
−∞

cosx
(x2+1)2

dx = π
e .
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3 Evaluation of Real Integrals – Type 2

We now consider the integrals of the form
∫∞
−∞ f(x) cos ax etc. The following result says that

the integral converges if f(z) → 0 as |z| → ∞ in the upper half plane. Note that we cannot
invoke Ex. 4 here.

Theorem 19 (Jordan’s Lemma). Let f be holomorphic on C except at a finite number of
points, none of which are real and that those in the upper half plane {z ∈ C : Im z > 0}
are z1, . . . , zn. Assume that given ε > 0 there exists R > 0 such that |f(z)| < ε whenever
Im z > R. Let a > 0. Then∫ ∞

−∞
f(x)eiax dx = 2πi×

n∑
k=1

Res (g; zk),

where g(z) = f(z)eiaz.

Proof. Given ε > 0, choose R > 0 such that (i) |zk| < R for 1 ≤ k ≤ n, (ii) |f(z)| ≤ ε for z
in the upper half plane with Im z > R and (iii) te−at ≤ 1 for t ≥ R. Let a > R, b > R and
c := a+ b. Choose C to be the rectangle with vertices at −a, b, b+ ic and −a+ ic.

Then by residue theorem,∫
C
f(z)eiz = 2πi×

n∑
k=1

Res (g, zk).

Let the line segments [b, b + ic], [b + ic,−a + ic] and [−a + ic,−a] be denoted by γ1, γ2 and
γ3 respectively. For z on γ1 and γ3, we have |f(z)| ≤ ε and |eiaz| = e−ay so that

|
∫
γj

g| ≤ ε
∫ c

0
e−ay dy =

ε

a
(1− e−ac) ≤ ε

a
, for j = 1, 3.

Since L(γ2) = c, we have

|
∫
γ2

g| ≤ cεe−ac ≤ ε.

Now the result follows from Prop. 3 (3).
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The following is a more popular version of Jordan’s lemma which is given below. Most
often when it is used what we get is the Cauchy principal value of

∫∞
−∞. So one needs some

standard test of convergence of improper integral to assert the existence of the integral under
consideration.

Lemma 20 (Jordan). Let γR(t) := Reit, 0 ≤ t ≤ π. Assume that (1) f is continuous on γR
for R ≥ R0, (2) |f(z)| ≤MR on γR, where MR → 0 as R→∞ and (3) a > 0. Then∫

γR

f(z)eiaz → 0, as R→∞.

Proof. Proceeding as usual, we arrive at

|
∫
γR

f(z)eiaz| ≤ R
∫ π

0
MRe

−aR sin t dt = 2R

∫ π/2

0
MRe

−aR sin t dt.

The crucial observation now is the following estimate (Ex. 21 below):

sin t ≥ 2

π
t, for 0 ≤ t ≤ π/2. (1)

Using this, we get |
∫
γR
f(z)eiaz| ≤ πMR

a (1− e−aR).

Ex. 21. Prove the Jordan’s inequality:

2

π
≤ sin t

t
≤ 1, for 0 ≤ t ≤ π/2.

Hint: To establish Jordan’s inequality, observe that sin t
t decreases as its derivative t cos t−sin t

t2
≤

0. To see this, we show that the numerator is non-positive on [0, π/2]. To achieve this, again
take derivative of the numerator to obtain −t sin t < 0 on [0, π/2]. At t = 0, t cos t− sin t = 0
and hence the numerator is decreasing.

Example 22. We show that
∫∞
−∞

x sin 3x
x2+9

= π
2e9

. Consider f(z) = ze3iz

z2+9
. Then f has a simple

pole at z = 3i in the upper half plane. Its residue there is Res (f ; 3i) = πi
2e9

. The result follows
from the theorem on separating the real and imaginary parts.

Example 23.
∫
R

cosx
1+x+x2

dx = 2π√
3
e−
√

3
2 cos(1/2).

Example 24.
∫∞

0
sin2 x
x2

dx = π
2 .

Example 25.
∫∞

0
e−2ix

1+x4
dx = π2

√
2(cos

√
2− sin

√
2)e
− 1√

2 .

Example 26.
∫
R

eax

coshx dx = π sec(πa/2), where −1 < a < 1.

Ex. 27. Show the following:
(1)

∫∞
−∞

x sinx
x2+a2

= π
ea .

(2)
∫∞
−∞

x3 sinx
(1+x2)2

= π
2e .

(3)
∫∞
−∞

(
x2−a2
x2+a2

) (
sinx
x

)
= π(2e−a − 1), where a > 0.

(4)
∫∞
−∞

cos ax−cos bx
x2

= π(b− a), where a, b ≥ 0.
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4 Evaluation of Real Integrals – Type 3

These are the integrals of the form
∫∞
−∞ f where f has singularities on the real line.

Lemma 28 (Fractional Residue Theorem). Assume that f has a simple pole at a. Let
γr(t) := a+ reit, α ≤ t ≤ β. Then∫

γr

f → ia−1(β − α), as r → 0+.

Remark 29. If the integration is performed on the full circle, then β−α = 2π and the residue
theorem gives the value 2πia−1, even without letting r → 0. Thus the lemma indicates that
the integration on an arc of the circle gives the corresponding fraction of 2πia−1, provided
that (i) r → 0 and (ii) the pole is simple.

Proof. Without loss of generality, let us assume that a = 0.

Write f(z) = a−1z
−1+g(z) where g is holomorphic in a ball around a, say, B[a, ε]. Then |g|

is bounded on this compact set, say, by M . Thus for 0 < r < ε, we have |
∫
γr
g| ≤M(β−α)r

which goes to 0 as r → 0. It is easily seen that
∫
γr
a−1z

−1 dz = ia−1(β − α). The result
follows.

Example 30. Consider
∫∞
−∞

sinx
x dx. The integrand is continuous and as such it has no

singularity anywhere. However, if we consider f(z) := eiz

z , then f has a simple pole at z = 0.
We use the path as in the Jordan’s lemma (Thm. 19) but with a slight detour near the pole
z = 0. More precisely, we replace the bottom side of the square C by the path γ which is
made up of the following: the line segment [−a,−r], followed by the semicircular arc (in the
lower half plane) γr(t) = reit, π ≤ t ≤ 2π, the line segment [r, b]. Let the new closed path be
denoted by σR.
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Proceeding as in Jordan’s lemma, we get:

2π = 2πi× Res (f ; 0) =

∫
σR

f

=

∫
γ
f +

∫
γ1

f +

∫
γ2

f +

∫
γ3

f

→
∫ −r
−∞

f(x) dx+

∫ ∞
r

f(x) dx+

∫
γr

f(z) dz,

as R→∞. By Lemma 28,
∫
γr
f → πiRes (f ; 0), as r → 0. Hence we find that

∫∞
−∞

sinx
x dx =

π.

Remark 31. This example is very interesting on at least two counts:

(i) It is not at all clear at the outset why the integral exists. There is no trouble at all if

the limits of integration are 0 and any real R > 0. The problem is at the far end, as
∫∞
R
| sinx|
x

is divergent. See Ex. 32 below.

(ii) In view of Ex.32, it is clear that the function sinx
x is not Lebesgue integrable on (0,∞)

but its improper (Riemann) integral exists!

Ex. 32. Show that
∫∞

0 |
sinx
x | does not exist. Hint: Observe the following:∫ ∞

0
|sinx
x
| dx >

n∑
k=2

∫ kπ

(k−1)π
|sinx
x
| dx

≥
n∑
k=2

∫ kπ

(k−1)π
|sinx
kπ
| dx

=
n∑
k=2

1

kπ

∫ π

0
sinx dx.

Ex. 33. Use Lemma 20 to find P.V.
∫∞
−∞

sinx
x dx. Hint: Consider the path consisting of

upper semicircle γR(t) = Reit, 0 ≤ t ≤ π, followed by the line segment [−R,−r], the upper
semicircle γr, the line segment [r,R].

Show also that the integral
∫∞
−∞

sinx
x dx is convergent and hence conclude that the principal

value is the value of the integral.

Ex. 34. Prove the following:
(1)

∫∞
0

1−cosx
x2

dx = π/2.

(2)
∫∞

0
sin2 x
x2

dx = π
2 . Hint: 2 sin2 x = 1− cos 2x and f(z) = 1−e2iz

z2
.

(3)
∫∞

0
x−sinx
x3

dx = π
4 . Hint: Consider f(z) = z+ieiz−i

z3
.

(4)
∫∞
−∞

cosx
a2−x2 dx = π sin a

a , a > 0.
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5 Evaluation of Real Integrals – Type 4

Trigonometric integrals of the form
∫ 2π

0 f(cos θ, sin θ) dθ.

Example 35. Let us compute
∫ 2π

0
dθ

a+cos θ for a > 1 using the residue theorem. Let z = eit.

Then cos t = (z + z)/2 = z2+1
2z and dz = ieit dt. Let γ(t) = eit, 0 ≤ t ≤ 2π. We have∫ 2π

0

dt

a+ cos t
=

∫
γ

2z

z2 + 2az + 1

dz

iz
= −2i

∫
γ

dz

z2 + 2az + 1
.

The integrand f in the right most integral has simple poles at −a ±
√
a2 − 1. Of these,

−a−
√
a2 − 1 lies outside γ. Since the product of these poles is 1, the other pole −a+

√
a2 − 1

lies inside γ. We find Res (f ;−a+
√
a2 − 1) = −i√

a2−1
. Hence by the residue theorem, we have∫

γ
f = 2πi× Res (f ;−a+

√
a2 − 1) =

2π√
a2 − 1

.

Example 36. Evaluate
∫ π

0 sin2n t dt = 1
2

∫ 2π
0 sin2n t dt. Since sin t = (eit − e−it)/2i = (z −

z−1)/2i for z ∈ γ1, the unit circle, we have
∫ 2π

0 sin2n t dt = −i
∫
γ1
f(z) where f(z) =

1
z ( z−z

−1

2i )2n. By binomial theorem,

f(z) = z−1
2n∑
k=0

(
2n

k

)
(2i)−2nzk(−z)k−2n

=

2n∑
k=0

(−1)n−k4−n
(

2n

k

)
z2k−2n−1.

Thus the only singularity of f in B(0, 1) is a pole at the origin. From the above expression,
we have Res (f ; 0) = 4−n

(
2n
n

)
. We find that

∫ π
0 sin2n t dt = π4−n

(
2n
n

)
.

It is possible to avoid the residue theorem in the above argument. Do you see how?

In general, given an integral of the form
∫ 2π

0 f(cos θ, sin θ), we can transform it into a path
integral over the unit circle, by using the facts sin θ = 1

2i [z − z
−1] etc. on the unit circle. In

fact, we have ∫ 2π

0
f (cos θ, sin θ) dθ =

∫
γ1

f

(
z + z−1

2
,
z − z−1

2i

)
dz

iz
.

Ex. 37. Show that ∫ 2π

0

dθ

1 + a cos θ
=

2π√
1− a2

=

∫ 2π

0

dθ

1 + a sin θ
,

for −1 < a < 1.

Ex. 38. Show that

(1)
∫ 2π

0
dθ

a+cos θ = 2π√
a2−1

, for a > 1.

(2)
∫ π

0
a

a2+sin2 θ
dθ = π√

1+a2
, a > 0. Hint: Express sin2 t in terms of cos 2t.

the
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As in integral calculus, there are just too many tricks (some bordering on ingenuity) in
the employment of residue theorem to compute the real integrals. We give a few examples of
this kind.

Example 39. We show that
∫∞

0
xm−1

1+xn dx = π
n

1
sin(π/n) , for integers 0 < m < n. Note that the

integrals exist. We consider f(z) = zm−1

1+zn . The path under consideration is the sector formed

of the line segment [0, R], R > 1, followed by the arc γR(t) = Reit, 0 ≤ t ≤ 2π/n and the line

segment from Re
2πi
n to 0.

The point p = eiπ/n is only one pole inside this closed path. We have Res (f ; p) = − 1
np

m.
It is easy to see that the integral over the arc goes to zero as R→∞. We compute the integral
over the line segment [Rp2, 0] as follows: Let γ3(t) = tp2, 0 ≤ t ≤ R. Then

∫
[Rp2,0] f = −

∫
γ3
f .

−
∫
γ3

f = −
∫ R

0

tm−1p2m−2

1 + tnp2n
p2 dt = −p2m

∫ R

0
f(x),

that is, a multiple of the original integral. One can now proceed as usual and establish the
claim.

Ex. 40. Derive the following special cases:

(1)
∫∞

0
xn−1

1+x2n
= π

2n .

(2)
∫∞

0
dx

1+xn = π
n

1
sin(π/n) .

Ex. 41. For 0 < a < 1, show that
∫∞
−∞

eax

ex+1 = π
sinπa by integrating along the rectangle whose

vertices are −R, R, R + 2πi and −R + 2πi. Hint: The integrals along the vertical sides go
to zero as R→∞ while the one on the top side is a multiple of the given integral. (Did you
show that the integral exists?)

Ex. 42. Evaluate
∫∞

0
ta−1

1+t dt. Hint: Make the substitution t = ex. Use the last exercise.

Ex. 43. In general, integrals of the form
∫∞

0 x−a−1f(x) dx can be evaluated as follows: Let
x = et and the integral becomes

∫∞
−∞ e

atf(et) dt. Now let g(z) := exp(az)f(ez), z ∈ C.
Integrate g round the boundary of the rectangle with vertices at R, R + 2πi, −T + 2π and
−T and take limits as R, T →∞. Use this method to show:

(i)
∫∞

0
xa−1

1+xb
dx = π

b sin(πa
b

) , 0 < a < b.

(ii)
∫∞

0
xa

1+2x cos θ+x2
dx = π

sin(πa)
sin aθ
sin θ , −1 < a < 1 and −π < θ < π.
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6 Fresnel’s and the Probability Integrals

Example 44 (Fresnel’s and the probability integrals). We compute the so-called Fresnel’s

integrals
∫∞

0 cos(x2) =
∫∞

0 sin(x2) dx in two different ways and show that each of them is
√
π

2
√

2
.

The first method relates them to the probability integral. As a by-product, we also compute
the probability integral. This approach is due to Cadwell.

Let us integrate the entire function f(z) := eiz
2

along γ where γ is the juxtaposition of
three paths: [0, R], AR := Reit, (0 ≤ t ≤ π/4) and [Reiπ/4, 0]. Draw pictures.

By Cauchy’s theorem, we have
∫
γ f = 0 so that

∫ R

0
eit

2
dt+

∫
AR

eiz
2
dz −

∫ Re
iπ/4

0
eiz

2
dz = 0.

On the arc AR, we have z = Reit so that

|
∫
AR

eiz
2
dz| = |

∫ π/4

0
eiR

2(cos 2t+i sin 2t) · iReit dt|

≤ R
∫ π/4

0
e−R

2 sin 2t dt

=
R

2

∫ π/2

0
e−R

2 sin θ dθ

≤ R

2

∫ π/2

0
e−

2R2

π

=
R

2

π

2R2
(1− e−R2

).

On [Reiπ/4, 0], we have z = reiπ/4, 0 ≤ r < R so that eiz
2

= e−r
2
. Hence, as R → ∞, we

obtain ∫ ∞
0

eix
2
dx =

∫ ∞
0

e−r
2
eiπ/4 dr = eiπ/4

∫ ∞
0

e−r
2
dr.

On equating the real and imaginary parts, we obtain∫ ∞
0

cosx2 dx =

∫ ∞
0

sinx2 dx =
1√
2

∫ ∞
0

e−x
2
dx. (2)
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Let us now employ a different path and a function with a simple pole to compute the
first two integrals of (6). Let A = −

√
π/2 − iR, B =

√
π/2 − iR, C =

√
π/2 + iR and

D = −
√
π/2 + iR. Let γ be the rectangle consisting of [A,B], [B,C] [C,D] and [D,A]. We

integrate f(z) = eiz
2

sin
√
πz

along this path. A trivial computation shows that

∫
[B,C]

f(z) dz +

∫
[D,A]

f(z) dz = 2

∫ R

−R
ei(

π
4
−y2)i dy.

On [C,D] we have | sin z
√
π| > sinh R√

π
and |eiz2 | = e−2Rx. It follows that

|
∫

[C,D]
f(z) dz| ≤

∫ √π/2
−
√
π/2

e−2Rx

sinhR
√
π
dx

=
1

sinhR
√
π

[
e−2Rx

−2R

]√π/2
−
√
π/2

=
1

R
.

Thus the path integral over [C,D] goes to zero as R → ∞. Similarly the path integral over
[A,B] goes to zero as R→∞. (Check it.)

We find that Res (f ; 0) = 1√
π

. Hence, by letting R→∞, we arrive at∫ ∞
0

ei(
π
4
−y2) dy =

√
π

2
.

Equating the real and imaginary parts, we obtain∫ ∞
0

sin(
π

4
− y2) dy = 0 and

∫ ∞
0

cos(
π

4
− y2) dy =

√
π

2
.

Using the addition formulas for the sine and cosine functions we see that∫ ∞
0

cosx2 dx =

∫ ∞
0

sinx2 dx =

√
π

2
√

2
. (3)

In view of (6)–(7), we also deduce
∫∞

0 e−x
2
dx =

√
π

2 .
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7 Laplace Transform

Definition 45. Let f : (0,∞)→ C be given. Let s ∈ C. Then the Laplace transform of f is
defined as follows:

L(f(t)) ≡ F (s) :=

∫ ∞
0

e−stf(t) dt := lim
R→∞

∫ R

0
e−stf(t) dt,

if the limit exists.

Definition 46. A function f : (0,∞) → C is said to be of exponential order α if there exist
M > 0, α ∈ R and T > 0 such that

|f(t)| ≤Meαt, for t ≥ T.

We have the following easy theorem, whose proof is left as an exercise.

Theorem 47. Let f : [0,∞) → C be piecewise continuous, of exponential order α. Then
F (s) = L(f(t)) exists for s ∈ C with Re s > α. Also, F is holomorphic in the region
Re s > α.

We state (without proof) the following inversion theorem for Laplace transform of a func-
tion.

Theorem 48. Let f be as in the last theorem. Let σ > α. Then we can recover f from its
Laplace transform F by the following ‘inversion formula’:.

f(t) =
1

2πi
lim
R→∞

∫ σ+iR

σ−iR
etsF (s) ds.

Residue theorem gives a very efficient method of computing the integral that appears in
the inversion formula. The following theorem gives a useful method of computing the integral
in the inversion formula.

Theorem 49. Let F be holomorphic except for a finite number of poles, say, {zj : 1 ≤ j ≤ n}.
Assume that there exist M > 0 and k > 0 such that

|F (s)| ≤M |s|−k, for |s| � 0.

Let α > 0 be chosen such that all the poles lie on the left half-plane {z ∈ C : Re z < α}. Then
for any s > 0, we have

1

2πi
lim
R→∞

∫ α+iR

α−iR
F (w)esw ds =

n∑
j=1

Res (F (w)esw; zj).

Proof. Let γ be the closed path composed of the line segment [α − iR, α + iR] followed by
the semicircle CR(t) := α+Reit, t ∈ [π2 ,

3π
2 ]. We choose R� 0 so that all the poles lie inside

γ. We can apply the residue theorem to conclude∫
γ
F (w)esw dw = 2πi

n∑
j=1

Res (F (w)esw; zj).

We claim that the integral
∫
CR

F (w)esw dw → 0 as R→∞. If we grant his, the result follows.
The claim is proved in the next lemma.
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Lemma 50. Let CR(t) := α + Reit, t ∈ [π2 ,
3π
2 ]. Let s > 0. Assume that |F (w)| ≤ M |w|−k

for |w| � 0 and k > 0. Then
∫
CR

ewsF (w)→ 0 as R→∞.

Proof. We have

J =

∫
CR

ewsF (w) dw =

∫ 3π/2

π/2
eαs+Rse

it
F (w)Rieit dt.

We have

|J | ≤
∫ 3π/2

π/2
eαseRs cos t|F (w)Rieit| dt.

Let us estimate a part of the integrand. Since w = α+Reit, we have |w| ≥ R− α. Hence,

|J | ≤Meαs(R− α)−kR

∫ 3π/2

π/2
eRs cos t dt.

The obvious trick here is to use Jordan’s inequality.

2

π
≤ sin θ

θ
≤ 1 for 0 ≤ θ ≤ π/2.

To make use of this, we make the change of variable θ = t + π
2 . The integral becomes∫ π

0 e−Rs sin θ dθ = 2
∫ π/2

0 e−Rs sin θ dθ. Hence, in view of Jordan’s inequality,

|J | ≤ 2Meαs(R− α)1−k
∫ π/2

0
e−Rs

2
π
θ

= 2Meαs(R− α)1−k
[
1− e−

2Rsθ
π

]π/2
0

= 2Meαs(R− α)1−k π

2Rs
[1− e−Rs]→ 0 as R→∞.
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8 Fourier Transforms

In this section, we define the Fourier transform of a function and compute the Fourier trans-
form of two functions using complex analysis.

Definition 51. Given f : R→ C, its Fourier transform is defined by

(Ff)(s) ≡ f̂(s) :=
1√
2π

∫
R
e−isxf(x) dx, (s ∈ R),

whenever the improper integral exists. Fourier transform exists on a large class of functions
such as continuous functions vanishing at infinity or more generally all Lebesgue integrable
functions.

Example 52. Let f(x) = 1
1+x2

. Its Fourier transform is given by

f̂(s) :=
1√
2π

∫
R
e−isx

1

1 + x2
.

We compute this integral using the residue theorem. The natural choice to which the reside
theorem is to be applied, is f(z) = e−isz(1 + z2)−1. The singularities are simples poles at ±i.
Now if we enclose one of these by a semicircle, CR(t) = Reit, where 0 ≤ t ≤ π or π ≤ t ≤ 2π,
then the term e−isw = e−isR(cos t+i sin t). Its absolute value is esR sin t which will go to zero as
R → ∞ if s < 0 and if sin t ≥ 0. This suggests that we consider the semicircle in the upper
half-plane Re z ≥ 0.

If s < 0, then we would like sin t < 0 so we shall consider the semi-circle in the lower
half-plane in this case.

Assume s < 0 and CR(t) = Reit for 0 ≤ t ≤ π. Let γ be the path CR followed by the line
segment [−R,R]. We apply the residue theorem to the function f(z) = e−isz(1 + z2)−1 and
the path γ. We obtain ∫

γ
f(z) = 2πi× Res (f ; i) = 2πi× es

2i
= πes.

An easy estimate shows that the integral over CR goes to zero as R→∞. Hence
∫
γ f →

∫
R f

as R→∞. We thus get

f̂(s) =
1√
2π
× πes =

√
π

2
es, for s < 0.

If s > 0, we employ the lower semicircle and obtain f̂(s) =
√

π
2 e
−s. Since f̂(0) =

√
π
2 , we

have established

f̂(s) =

√
π

2
e−|s|.

Example 53. Consider f(x) = 1√
2π
e−x

2/2. We compute the Fourier transform of f using

only Cauchy’s theorem.
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We have

f̂(s) =
1

2π

∫
R
e−(x2+2isx)/2 dx

=
1

2π
e−s

2/2

∫
R
e−(x+is)2/2 dx.

We claim that the last integral on the right is independent of s. (See Ex. ??. We shall prove
this below.) Assuming the claim for the moment, we arrive at

f̂(s) =
1

2π
e−s

2/2

∫
R
e−x

2/2 dx =
1

2π
e−s

2/2 ×
√

2π = f(s).

Thus the Fourier transform of f is f itself.

We now prove the claim. Let γ be the juxtaposition of the paths [−R1, R2], [R2, R2 + is],
[R2 + is,−R1 + is] and [−R1 + is,−R1]. See Figure ??. Since f(z) = e−z

2/2 is holomorphic,
we obtain

∫
γ f(z) = 0.

0 =

∫
[−R1,R2]

f +

∫
[R2,R2+is]

f +

∫
[R2+is,−R1+is]

f +

∫
[−R1+is,−R1]

f.

We claim that the second integral goes to zero as R2 → 0. We estimate the second integral
using ML-inequality.

|
∫

[R2,R2+is]
f | = |

∫ s

0
e−(R2+is)2/2i dt|

≤ |s|es2/2e−R2/2.

The last quantity goes to zero as R2 →∞. A similar argument shows that the fourth integral
goes to zero as R1 →∞. Thus we obtain

0 = lim
R1,R2→0

(∫ R2

−R1

e−x
2/2 dx−

∫ R2

−R1

e−(x+is)2/2 dx

)
=

∫ ∞
−∞

e−x
2/2 dx−

∫ ∞
−∞

e−(x+is)2/2 dx.

The claim is proved.

Example 54. We now compute the integral
∫
R e
−x2 dx using the residue theorem. Note that

the obvious choice is e−z
2

and it is entire. We learnt the computation below from [?] where
it is credited to Kneser.

Consider

f(z) :=
e−z

2

1 + e−2az
, where a =

√
π · 1 + i√

2
=
√
πeiπ/4.

Observe that a2 = πi. Hence

e−2a(z+a) = e−2aze−2a2 = e−2aze−2πi = e−2az.
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Therefor, a is a period of the function e−2az. Let us compute

f(z)− f(z + a) =
e−z

2

1 + e−2az
− e−(z+a)2

1 + e−2a(z+a)

=
e−z

2 − e−z2e−2zae−a
2

1 + e−2az

=
e−z

2
(1 + e−2az)

1 + e−2az

= e−z
2
. (4)

The function f has simple poles at −a
2 + na where n ∈ Z. Let us enclose the pole −a/2

between the y = 0 and the line through a parallel to y = 0. See Figure ??. Let us compute
the residue of f at −a/2.

Res
(
f ;−a

2

)
=

e−a
2/4

h′(−a/2)
, where h(z) = 1 + e−2az.

We compute h′(−a/2):

h′(z) = −2ae−2az so that h′(−a/2) = −2aea
2

= −2aeiπ = 2a.

We have e−a
2/4 = e−iπ/4 so that the residue is given by

Res
(
f ;−a

2

)
=
e−iπ/4

2a
=

1

2

e−iπ/4
√
πeiπ/4

=
1

2

1√
π
e−iπ/2 = − i

2
√
π
.

Note that the sum of the path integrals over the horizontal paths add up to
∫ R2

−R1
e−x

2
dx in

view of (4). Also, the integrals over the vertical paths go to zero as R1 → ∞ and R2 → ∞.
Hence we obtain ∫ ∞

−∞
e−x

2
dx = 2πi× Res

(
f ;−a

2

)
= 2πi× −i

2
√
π

=
√
π.
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9 Integrals involving Multifunctions

The kind of integrals which are of the from
∫∞

0
R(x)
xα dx, 0 < α < 1 and

∫∞
0 R(x) log x dx

fall under this type. We assume that R(x) = P (x)/Q(x) is a rational function such that
degQ ≥ 1 + degP . We further assume that R has no pole in [0,∞).

Example 55. Let R(x) = P (x)/Q(x) be a rational function. Assume that degQ ≥ 2+degP .
We further assume that Q does not vanish on (0,∞) and that Q has a zero of order at most
1 at x = 0. Let 0 < a < 1. We wish to evaluate the integral

∫∞
0 R(x)xa dx. Note that the

improper integral exists.

Let U := C \ {t ∈ R : t ≥ 0}. Then U is star-shaped and hence a primitive of 1/z exists in
U . Since any two primitives differ by a constant in U , we assume that the primitive, called
again log is so chosen that log−1 = 1/e. Note that this entails, for x > 0

log(x+ iy)→ log x, as y → 0+

log(x− iy)→ log x+ 2πi, as y → 0+.

Having chosen the logarithm in U , we define zα := exp(α log z). Choose R � 0 so that all
the poles of f(z) := R(z)z−α lie in B(0, R). Let r > 0 and ε > 0 be small. We consider the
closed key-hole path γ shown in the figure.

We have ∫
γ
f(z) dz = 2πi

∑
a∈U

Res (f ; a). (5)

We claim that the integrals along the circular arcs
∫
CR

f → 0 as R → ∞ and
∫
Cr
f → 0

as r → 0. Note that
|zα| = |eα log z| = eαRe log z = eα log |z| = |z|α.

Let us now attend to
∫
Cr

. Let r be sufficiently small. Since Q has a zero of order less
than or equal to one, there exists M > 0 such that

|R(z)| ≤ M

|z|
for all z ∈ B′(0, r).
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Hence we arrive at

|
∫
Cr

f(z) dz| ≤ 2πr × rαM
r
→ 0, as r → 0.

Let us now attend to
∫
CR

. Our hypothesis on the degrees of P and Q ensures the existence
of M > 0 (different from the earlier M , if required!) such that

|R(z)| ≤ M

|z|2
for |z| � 0.

We therefore conclude that

|
∫
CR

f(z) dz| ≤ 2πRRα
M

R2
→ 0 as R→∞.

For fixed r and R, we have∫
L1

f(z) dz +

∫
L2

f(z) dz → (1− e2πiα)

∫ R

r
eα log xR(x) dx as ε→ 0.

Thus, if we first let ε→ 0 and then let r → 0 and R→∞, we arrive at∫ ∞
0

xαR(x) dx =
2πi

1− e2πiα

∑
a∈U

Res (f ; a).

Example 56. Let I :=
∫∞

0
dx

xα(1+x) where 0 < α < 1. Then the only singularity of f(z) =

e−α log z

1+z is a simple pole at z = −1. We find

Res (f, z = −1) = e−α log(−1) = e−απi.

We therefore find∫ ∞
0

dx

xα(1 + x)
=

2πi× e−απi

1− e−2απi
=

2πi× e−απi

e−απi(eαπi − e−απi)
=

π

sinπα
.

Example 57.
∫∞

0

√
x

1+x3
dx = π

3 .

Example 58. Let I :=
∫∞

0
log2 x
1+x2

dx.

Let U := C \ {t ∈ R : t ≤ 0}. We define log z = log |z|+ iθ where θ ∈ (−π, π).

We let f(z) = log2 z
1+z2

and γ be the juxtaposition of the semi-circle CR, [−R,−r], Cr and
[r,R]. As we have seen earlier, to make the path live in U , we need to lift [−R,−r] followed
by the left part of Cr by an ε-distance from the x-axis and then let ε → 0. In practice, Picture!

we do not do this but assume that our working justified along the lines of the last example.
The point z = i is the simple pole in the area enclosed by γ. The residue is given by

Res (f ; i) = (iπ/2)2

2i = −π2

8 . By the residue theorem, we have∫
γ
f(z) dz =

∫ r

R

log(reiπ)2

1 + (reıπ)2
eiπ dr +

∫ R

0

log2 x

1 + x2
dx+

∫
CR

f(z) dz +

∫
Cr

f(z) dz

= 2πi× (−π
2

8
) = −π

3

8
. (6)
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Using the ML estimate, we easily see that the path integrals along Cr (respectively the one
along CR) goes to zero as r → 0 (respectively, as R→∞). Therefore, as r → 0 and R→∞,
we obtain from (6)

2

∫ ∞
0

log x2

1 + x2
dx+ 2πi

∫ ∞
0

log x2

1 + x2
dx− π2

∫ ∞
0

1

1 + x2
dx = −π

3

4
.

Since
∫∞

0
1

1+x2
dx = π

2 , we find that

2

∫ ∞
0

log x2

1 + x2
dx+ 2πi

∫ ∞
0

log x2

1 + x2
dx = π2π

2
− π3

4
=
π3

4
.

Equating the real and imaginary parts yields∫ ∞
0

log2 x

1 + x2
=
π3

8
and

∫ ∞
0

log x

1 + x2
= 0.

Example 59.
∫∞

0
log x
a2+x2

dx = π log a
2a where a > 0.

Let U := C \ {t ∈ R : t ≤ 0}. We define log z = log |z|+ iθ where θ ∈ (−π, π). Then the
function f(z) := log z

z2+a2
is holomorphic on U except simple pole at ia.

We consider the path as in the Figure below: CR(t) := Reit, t ∈ (π,−π), followed by
[−R− r], the semicircle Cr and finally [r,R].

We have from the residue theorem∫
γ
f(z) dz = 2πi× Res (f ; ai) =

π log a

a
+ i

π2

2a
. (7)

Proceeding in by now standard way, we arrive at the result.

Example 60. Use the key-hole path and the residue theorem to evaluate
∫
γ

log z
(z+a)(z+b) dz

where a and b are positive. Hence conclude that
∫∞

0
log x

(x+a)(x+b) = log(b/a)
b−a . Of course, this can

be solved using the standard partial fraction trick of calculus. Picture!

Example 61. Show that
∫∞

0
log x
x2−1

dx = π2

4 . The obvious choice of function is log z
z2−1

. The

points to worry are at z = ±1 and z = 0. Since log z and z2 − 1 have a simple zero at z = 1,
we conclude that z = 1 is a removable singularity. The path o consider therefore is CR and
two smaller semicircles to avoid z = −1 and z = 0 on the line segment [−R,R]. It is easy to
see the integrals over CR and Cr go to zero as R→∞ and r → 0. To tackle the contribution
on the semicircle centered at z = −1, use the fractional residue theorem. Picture!
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