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Definition 1. Given an open cover {Ui : i ∈ I} of a metric space (X, d), we say that a
positive number δ is a Lebesgue number of the cover, if for any subset A ⊂ X whose diameter
is less than δ, there exists i ∈ I such that A ⊂ Ui.

Remark 2. If δ is a Lebesgue number of the cover and 0 < δ′ ≤ δ, then δ′ is also a Lebesgue
number of the given open cover.

In general, an open cover may not have a Lebesgue number.

Ex. 3. Let X = (0, 1) with the usual metric. Let Un := (1/n, 1). Then {Un : n ∈ N} is an
open cover of X. Does there exist a Lebesgue number for this cover?

Theorem 4 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. Let {Ui :
i ∈ I} be an open cover of X. Then a Lebesgue number exists for this cover.

We give three proofs of this result.

Proof 1. For x ∈ X, there is an i(x) such that x ∈ Ui(x) and an r(x) > 0 such that
B(x, 2r(x)) ⊂ Ui(x). (Why?) There exist finitely many xk, 1 ≤ k ≤ n such that X =
∪kB(xk, rk) where rk := r(xk). Let δ be any positive real such that δ < min{rk}. Let A be any
subset with diam (A) < δ. Let a ∈ A. Then a ∈ B(xk, rk) for some k. Let x ∈ A be arbitrary.
Then d(x, xk) ≤ d(x, a) + d(a, xk) < δ + rk < 2rk. Thus, A ⊂ B(xk, 2rk) ⊂ Ui(xk).

Proof 2. Suppose that the result is not true. Then, for any δ = 1/n, there is a subset An with
diameter less than 1/n and such that it is not a subset of Ui for any i. Choose any xn ∈ An.
Then the sequence (xn) has a convergent subsequence (xnk

) such that xnk
→ p in X. Let

p ∈ Ui. Let r > 0 be such that B(p, 2r) ⊂ Ui. Choose k so large that xnk
∈ B(p, r) and

1/nk < r. Now if a ∈ Ank
is any element, then, d(a, p) ≤ d(a, xnk

) + d(xnk
, p) < 2r. That is,

Ank
⊂ B(p, 2r) ⊂ Ui, contradicting our assumption on the An’s.

Proof 3. We may assume that the given cover is finite, say, {Ui}1≤i≤n. Let fi(x) := d(x,X\Ui).
Then fi are continuous and fi(x) = 0 iff x ∈ X \ Ui, i.e., iff x /∈ Ui. Let f := max{fi}. Then
f is continuous on X and f(x) = 0 iff x /∈ Ui for all i, which is not possible, as Ui’s cover X.
Thus, f(x) > 0 for all x ∈ X. Let δ := inf{f(x) : x ∈ X}. Then δ > 0. (Why?) Let A be any
subset with diam (A) < δ. Let a ∈ A be arbitrary. Then f(a) ≥ δ and hence fi(a) ≥ δ for
some i. Hence a ∈ Ui. If x ∈ A is any point, then x ∈ Ui. For, otherwise, x ∈ X \ Ui so that
d(a, x) ≥ d(a,X \ Ui) = fi(a) ≥ δ. Hence diam (A) ≥ δ, a contradiction. Hence A ⊂ Ui.
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Ex. 5. Let f : (X, d) → (Y, d) be continuous. Assume that X is compact. Prove that f is
uniformly continuous (i) using the theorem and (ii) imitating the first (second) proof of the
theorem.

Theorem 7 gives an interesting converse.

Definition 6. We say that a metric space has the Lebesgue number property, if every open
cover of X has a Lebesgue number.

Theorem 7. The following are equivalent for a metric space X:
1. X has Lebesgue number property.
2. Every continuous map from X to another metric space is uniformly continuous.
3. Every real valued continuous function on X is uniformly continuous.

Proof. (1) =⇒ (2): Let f : X → Y be a continuous map from X to another metric space
Y . Let ε > 0 be given. Since f is continuous at x ∈ X, there exists a δx > 0 such that for
any x′ ∈ B(x, δx), we have d(f(x′), (x)) < ε/2. Now, the collection {B(x, 2−1δx) : x ∈ X}
is an open cover of X. Let δ be a Lebesgue number of the cover. Let x1, x2 ∈ X with
d(x1, x2) < δ/2. Since the diameter of B(x1, δ/2) ≤ 2δ, there exists x ∈ X such that
B(x1, δ/2) ⊂ B(x, 2−1δx)). Hence d(x1, x2) < δx. It follows that

d(f(x1), f(x2)) ≤ d(f(x1), f(x)) + d(f(x), f(x2)) < ε/2 + ε/2 = ε.

Thus f is uniformly continuous.

(2) =⇒ (3): Take Y = R in (2).

(3) =⇒ (1): We shall prove this contradiction. So, we assume that there exists an
open cover {Uα : α ∈ I} of X which has no Lebesgue number. This means that given any
n ∈ N, we can find xn ∈ X such that B(xn, 1/n) is not contained in any of the Uα’s. In
other words, given n ∈ N, there exists xn ∈ X such that B(xn, 1/n) \Uα 6= emptyset for each
α ∈ I. We claim that no B(xn, 1/n) is a singleton. For, otherwise, xn must be in some Uα.
Hence B(xn, 1/n) = {xn} ⊂ Uα, contradicting our choice of xn. So, let yn ∈ B(xn, 1/n) with
yn 6= xn.

We claim that neither of the two sequences (xn) and (yn) can have a convergent subse-
quence. Assume the contrary. For instance, let us assume that (xnk

) is a convergent subse-
quence of (xn) converging to some x ∈ X. If x ∈ Uα (which must happen for some α ∈ I), then
there exists r > 0 such that B(x, r) ⊂ Uα. Since xnk

→ x as k →∞, it follows that for some
k0 ∈ N, we have xnk

∈ B(x, r) for all k ≥ k0. Since nk →∞, we see that 1/nk < r−d(x, xnk
)

for all sufficiently large k. As a consequence, B(xnk
, 1/nk) ⊂ B(x, r) ⊂ Uα, a contradiction

to our choice of xn’s. If (ynk
) is a convergent subsequence, converging to y ∈ X, clearly,

xnk
→ y, impossible by what was seen just now.

We now construct two closed subsets A and B out of these two sequences inductively.
Let n1 = 1. We assume that x1 and y1 are already in A and B. We select n2 > n1 such
that xn2 6= xn1 and yn1 6= yn1 . This is possible, since otherwise, for all n > n1, xn = x1 etc.
Hence (xn) and (yn) will have convergent subsequences, contradicting our claim in the last
paragraph. Assume that we have found n1 < · · · < nk such that xn1 , . . . , xnk

and xn1 , . . . , xnk

are disjoint. We select nk+1 > nk so that xnk+1
/∈ {xn1 , . . . , xnk

}, ynk+1
/∈ {yn1 , . . . , ynk

} and
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the sets Ak := {xnj : 1 ≤ j ≤ k + 1} and Bk := {ynj : 1 ≤ j ≤ k + 1} are disjoint. That this
is possible is seen as earlier.

For, if this is not possible, then for all n > nk, xn must lie in the finite set Ak∪Bk.
It follows that xn must be one of the elements in this set for infinitely many values
of n. But then (xn) will have a convergent subsequence.

We claim A := {xnk
} and B := {ynk

} are disjoint and closed. They are disjoint by
construction. The set A is closed, if x is the limit of a sequence in A, then (xn) has a
convergent subsequence. Hence no x ∈ X \ A could be the limit of a sequence in A. Hence
A is closed. Similarly, B is closed. Let us define f(a) = 0 for all a ∈ A and f(b) = 1 for
all b ∈ B. Then f is continuous on the closed set A ∪ B. By Urysohn’s lemma, there exists
a continuous extension, call it g, to X. The function g cannot be uniformly continuous.
For, let δ > 0 work for ε = 1. The d(xnk

, ynk
) < 1/nk < δ for all sufficiently large k but

|g(xnk
)− g(ynk

)| = 1. So, we conclude that g is continuous but not uniformly continuous.
This contradicts our hypothesis on X.

Remark 8. Let X be a complete metric space such that every real valued continuous function
is uniformly continuous. Is X compact? No, not necessarily. Look at R with discrete topology.
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