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Definition 1. Given an open cover {U; : i € I} of a metric space (X,d), we say that a
positive number ¢ is a Lebesgue number of the cover, if for any subset A C X whose diameter
is less than 9, there exists ¢ € I such that A C U;.

Remark 2. If § is a Lebesgue number of the cover and 0 < ¢’ < §, then ¢’ is also a Lebesgue
number of the given open cover.

In general, an open cover may not have a Lebesgue number.

Ex. 3. Let X = (0,1) with the usual metric. Let U, := (1/n,1). Then {U,, : n € N} is an
open cover of X. Does there exist a Lebesgue number for this cover?

Theorem 4 (Lebesgue Covering Lemma). Let (X, d) be a compact metric space. Let {U; :
i € I} be an open cover of X. Then a Lebesgue number exists for this cover.

We give three proofs of this result.

Proof 1. For x € X, there is an i(v) such that € Uj,) and an 7(z) > 0 such that
B(z,2r(x)) C Ujg). (Why?) There exist finitely many zz, 1 < k < n such that X =
Uk B(xg, ri) where ry := r(z). Let 0 be any positive real such that § < min{ry}. Let A be any
subset with diam (A) < §. Let a € A. Then a € B(xy, i) for some k. Let z € A be arbitrary.
Then d(z,z;) < d(z,a) + d(a,z) <+ 1) < 2rg. Thus, A C B(zg, 2r%) C Uj(y,)- O

Proof 2. Suppose that the result is not true. Then, for any § = 1/n, there is a subset A4,, with
diameter less than 1/n and such that it is not a subset of U; for any i. Choose any z,, € A,.
Then the sequence (z,) has a convergent subsequence (z,, ) such that z,, — pin X. Let
p € U;. Let r > 0 be such that B(p,2r) C U;. Choose k so large that x,, € B(p,r) and
1/ny < r. Now if a € A,,, is any element, then, d(a,p) < d(a, zy, ) + d(zn,,p) < 2r. That is,
A, C B(p,2r) C U;, contradicting our assumption on the A,’s. O

Proof 3. We may assume that the given cover is finite, say, {U; }1<i<n. Let fi(z) := d(z, X\U;).
Then f; are continuous and f;(x) =0 iff z € X \ Uj, i.e., iff x ¢ U;. Let f:= max{f;}. Then
f is continuous on X and f(x) = 0 iff = ¢ U; for all 4, which is not possible, as U;’s cover X.
Thus, f(x) >0 for all x € X. Let 6 := inf{f(z) : € X}. Then 6 > 0. (Why?) Let A be any
subset with diam (A) < . Let a € A be arbitrary. Then f(a) > 0 and hence f;(a) > § for
some i. Hence a € U;. If x € A is any point, then = € U;. For, otherwise, x € X \ U; so that
d(a,z) > d(a,X \U;) = fi(a) > 0. Hence diam (A) > 4§, a contradiction. Hence A C U;. [



Ex. 5. Let f: (X,d) — (Y,d) be continuous. Assume that X is compact. Prove that f is
uniformly continuous (i) using the theorem and (ii) imitating the first (second) proof of the
theorem.

Theorem 7 gives an interesting converse.

Definition 6. We say that a metric space has the Lebesgue number property, if every open
cover of X has a Lebesgue number.

Theorem 7. The following are equivalent for a metric space X :
1. X has Lebesgue number property.
2. Bvery continuous map from X to another metric space is uniformly continuous.
3. FEvery real valued continuous function on X is uniformly continuous.

Proof. (1) = (2): Let f: X — Y be a continuous map from X to another metric space
Y. Let € > 0 be given. Since f is continuous at z € X, there exists a J; > 0 such that for
any 2’ € B(z,d,), we have d(f(z'),(z)) < £/2. Now, the collection {B(z,27%5,) : x € X}
is an open cover of X. Let § be a Lebesgue number of the cover. Let zi,x0 € X with
d(xz1,m2) < §/2. Since the diameter of B(z1,d/2) < 26, there exists z € X such that
B(x1,8/2) C B(x,2716,)). Hence d(z1,72) < d,. It follows that

d(f (1), f(x2)) < d(f(21), f(2)) +d(f(2), f(z2)) <e/2+ /2 =e.

Thus f is uniformly continuous.
(2) = (3): Take Y =R in (2).

(3) = (1): We shall prove this contradiction. So, we assume that there exists an
open cover {U, : o € I} of X which has no Lebesgue number. This means that given any
n € N, we can find x,, € X such that B(z,,1/n) is not contained in any of the U,’s. In
other words, given n € N, there exists x,, € X such that B(z,,1/n)\ Uy # emptyset for each
a € I. We claim that no B(z,,1/n) is a singleton. For, otherwise, z,, must be in some U,,.
Hence B(zy,1/n) = {z,} C Uy, contradicting our choice of z,. So, let y,, € B(x,,1/n) with
Yn F Tn.

We claim that neither of the two sequences (x,) and (y,) can have a convergent subse-
quence. Assume the contrary. For instance, let us assume that (x,,) is a convergent subse-
quence of (z,) converging to some x € X. If z € U, (which must happen for some « € I), then
there exists r > 0 such that B(z,r) C U,. Since z,, — x as k — o0, it follows that for some
ko € N, we have x,, € B(x,r) for all k > ky. Since ny — oo, we see that 1/n, < r—d(z,zy,)
for all sufficiently large k. As a consequence, B(xy,,1/n;) C B(x,r) C U,, a contradiction
to our choice of z,,’s. If (yy,,) is a convergent subsequence, converging to y € X, clearly,
Zn, — Y, impossible by what was seen just now.

We now construct two closed subsets A and B out of these two sequences inductively.
Let n; = 1. We assume that z; and y; are already in A and B. We select no > nq such
that x,, # xp, and yn, # yn,. This is possible, since otherwise, for all n > n;, x,, = x; etc.
Hence (z,,) and (y,) will have convergent subsequences, contradicting our claim in the last
paragraph. Assume that we have found ny < --- < ny such that z,,,...,z,, and zp,,...,Tp,
are disjoint. We select ngy1 > ny so that z,, | & {Zny,- . T}y Ynpyr & Yoo+ Yny, t and



the sets Ay := {zy; : 1 < j < k+1} and By := {y,, : 1 < j < k+ 1} are disjoint. That this
is possible is seen as earlier.

For, if this is not possible, then for all n > ng, x,, must lie in the finite set AU By.
It follows that x,, must be one of the elements in this set for infinitely many values
of n. But then (z,,) will have a convergent subsequence.

We claim A := {x,,} and B := {yp,} are disjoint and closed. They are disjoint by
construction. The set A is closed, if x is the limit of a sequence in A, then (x,) has a
convergent subsequence. Hence no z € X \ A could be the limit of a sequence in A. Hence
A is closed. Similarly, B is closed. Let us define f(a) = 0 for all a € A and f(b) = 1 for
all b € B. Then f is continuous on the closed set A U B. By Urysohn’s lemma, there exists
a continuous extension, call it g, to X. The function g cannot be uniformly continuous.
For, let 6 > 0 work for ¢ = 1. The d(xy,,yn,) < 1/nx < ¢ for all sufficiently large k but
lg(zn,) — 9(yn,)| = 1. So, we conclude that g is continuous but not uniformly continuous.
This contradicts our hypothesis on X. O

Remark 8. Let X be a complete metric space such that every real valued continuous function
is uniformly continuous. Is X compact? No, not necessarily. Look at R with discrete topology.



